We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Plasmonic Resonance Technique Detects Breast Cancer Marker in Single Cells

By LabMedica International staff writers
Posted on 07 May 2014
Print article
Image: Schema of surface plasmon resonance (Photo courtesy of Wikimedia Commons).
Image: Schema of surface plasmon resonance (Photo courtesy of Wikimedia Commons).
A nano-technique based on DNA-tagged gold nanoparticles was used to detect and quantify splice variants of BRCA1 messenger RNA (mMRNA) at the level of single cells.

BRCA1 (breast cancer 1, early onset) is a human caretaker gene that produces a protein called breast cancer type 1 susceptibility protein, responsible for repairing DNA. BRCA1 is expressed in the cells of breast and other tissue, where it helps repair damaged DNA or destroy cells if DNA cannot be repaired. If BRCA1 does not function properly, damaged DNA is not repaired, and this increases risks for cancers.

The presence of BRCA1 mRNA splice variants is a marker for the type of gene expression failure that might lead to development of breast cancer, but there is currently a lack of quantitative technologies for monitoring mRNA splice variants in cells.

Investigators at Purdue University (West Lafayette, IN, USA) reported that a combination of plasmonic gold nanoparticle dimer probes and hyperspectral imaging could be used to detect and quantify mRNA splice variants in living cells. The probes were made from gold nanoparticles functionalized with oligonucleotides designed to hybridize to specific BRACA1 mRNA splice variant sequences, forming nanoparticle dimers that exhibited distinct spectral shifts due to plasmonic coupling.

Plasmonic resonance is a phenomenon that occurs when light is reflected off thin metal films, which may be used to measure interaction of biomolecules on the surface. An electron charge density wave arises at the surface of the film when light is reflected at the film under specific conditions. A fraction of the light energy incident at a defined angle can interact with the delocalized electrons in the metal film (plasmon) thus reducing the reflected light intensity. The angle of incidence at which this occurs is influenced by the refractive index close to the backside of the metal film, to which target molecules are immobilized. If ligands in a mobile phase running along a flow cell bind to the surface molecules, the local refractive index changes in proportion to the mass being immobilized. This can be monitored in real time by detecting changes in the intensity of the reflected light. This property allowed the investigators to distinguish between free gold particles and those bound to BRACA1 mRNA.

Results published in the April 20, 2014, online edition of the journal Nature Nanotechnology revealed that a combination of spectroscopy and advanced digital colorimetric image techniques could distinguish between free gold nanoparticles and those bound to strands of mRNA (dimers) and monitor the spatial and temporal distribution of three selected BRCA1 mRNA splice variants at single-copy resolution.

"This is a simple yet sophisticated technique that can be used to detect cancer in a single cell and determine how aggressive it is," said senior author Dr. Joseph Irudayaraj, professor of agricultural and biological sciences at Purdue University. "Being able to quantify these genetic molecules could ultimately help clinicians provide better and more individualized treatment to cancer patients."

"With this method, we are basically able to spot a needle in a haystack - and we can determine if there are 5 needles in that haystack or if there are 50," said Dr. Irudayaraj. "If we can quantify key mRNA at single cell resolution in a tissue biopsy, that will be very powerful in terms of refining treatment protocols for key diseases."

Related Links:

Purdue University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.