Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Melanoma Development Depends on the Activity of the RUNX2 Transcription Factor

By BiotechDaily International staff writers
Posted on 28 Apr 2014
Image: Expression of RUNX2 in the nucleus of 1205LU melanoma cells (Photo courtesy of the Rutgers Cancer Institute).
Image: Expression of RUNX2 in the nucleus of 1205LU melanoma cells (Photo courtesy of the Rutgers Cancer Institute).
The transcription factor RUNX2 (runt-related transcription factor 2) has been found to play a critical role in melanomagenesis, the processes leading to development of the skin cancer, melanoma.

The RUNX2 gene is a member of the RUNX family of transcription factors and encodes a nuclear protein with a Runt DNA-binding domain. This protein is essential for osteoblastic differentiation and skeletal morphogenesis and acts as a scaffold for nucleic acids and regulatory factors involved in skeletal gene expression.

Investigators at the Rutgers Cancer Institute (New Brunswick, NJ, USA) examined the role of the RUNX2 transcription factor in melanomagenesis. They reported in the March 31, 2014, online edition of the journal Cancer Letters that the expression of transcriptionally active RUNX2 was increased in melanoma cell lines as compared with normal human melanocytes. Using a melanoma tissue microarray, they showed that RUNX2 levels were higher in melanoma cells as compared with nevic melanocytes.

Genetic silencing of RUNX2 in melanoma cell lines significantly decreased Focal Adhesion Kinase expression and inhibited cell growth, migration, and invasion ability. Furthermore, the pro-hormone cholecalciferol reduced RUNX2 transcriptional activity and decreased migration of melanoma cells, further suggesting a role of RUNX2 in melanoma cell migration.

“Successful efforts to render transcription factors “drugable” by interfering with different aspects of their transcriptional activity make this class of proteins attractive targets for therapy,” said senior author Dr. Karine Cohen-Solal, assistant professor of medicine at the Rutgers Cancer Institute. “Exploring the role of RUNX2 in the development of melanoma is likely to reveal new mechanisms driving melanoma progression and identify a target for novel antimelanoma agents, thereby opening new avenues for the treatment of this disease.”

Related Links:
Rutgers Cancer Institute



BIOSIGMA S.R.L.
RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.