We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Microarray Gene Expression Approach May Help Predict Cancer Patient Survival

By LabMedica International staff writers
Posted on 14 Apr 2014
Print article
A new predictive genetic tool is being developed that could help cancer patients and their physicians decide whether follow-up treatments are likely to help.

A 3-year study led by Jerry Shay, professor at the Cell Biology Department of the University of Texas (UT) Southwestern Medical Center (Dallas, TX, USA), investigated effects of irradiation in a lung cancer-susceptible mouse model by looking at gene expression changes, then applying the results to examine disease outcome prediction for human patients with early stage lung or breast cancer. The researchers found that they could predict which patients had a high or low chance of survival.

Carcinogenesis is an adaptive process between nascent tumor cells and their microenvironment, including the modification of inflammatory responses from antitumorigenic to protumorigenic. Radiation exposure can stimulate inflammatory responses that inhibit or promote carcinogenesis, and can damage surrounding healthy tissue. Cancer survival statistics vary depending on the stage of the cancer and when it is diagnosed. The study, described by Delgado O. et al. in Clinical Cancer Research, March 15, 2014, examined the impact of radiation exposure on mouse lung cancer progression in vivo and assessed the clinical relevance of the results to predicting survival rates for human patients. The study offers insight into helping patients assess treatment risks.

“This finding could be relevant to the many thousands of individuals affected by these cancers and could prevent unnecessary therapy,” said Prof. Shay; “We’re trying to find better prognostic indicators of outcomes so that only patients who will benefit from additional therapy receive it.”

The research team found that some types of irradiation resulted in an increase in invasive, more malignant tumors. Gene expression changes in the mice were examined from well before development of advanced cancers. The mouse genes that correlated with poor outcomes were then matched with human genes. Upon comparing the mouse predictive signatures with more than 700 human cancer patient signatures, the overall survivability of the patients correlated with the predictive signature in the mice—the classifier that predicted invasive cancer in mice also predicted poor outcomes in humans. Immunohistochemical analyses suggested that tumor cells drive predictive signature.

The findings predicted overall survival in the patients with early-stage lung- or breast- adenocarcinomas, however the genes were not predictive for patients with lung squamous cell carcinoma. Other types of cancers have yet to be tested. “Personalized medicine is coming,” said Prof. Shay; “I think this is the future—patients looking at their risks of cancer recurrence and deciding what to do next. We can better tailor the treatment to fit the individual. That’s the goal.”

Related Links:

University of Texas Southwestern Medical Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.