We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Encapsulated Human-Insulin-Producing Progenitor Cells Cure Diabetes in Mouse Model

By LabMedica International staff writers
Posted on 08 Apr 2014
Print article
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).
A breakthrough system that allows subcutaneous implantation of encapsulated immature pancreatic cells (beta progenitor cells) was shown to produce enough insulin to correct the symptoms of diabetes in a mouse model.

Investigators at the Sanford-Burnham Medical Research Institute (La Jolla, CA, USA) and the University of California, San Diego (USA) placed CyT49 pancreatic islets derived from human embryonic stem cells (hESCs) into TheraCyte (Laguna Hills, CA, USA) encapsulation devices and transplanted the devices into a diabetic mouse model.

The TheraCyte system for encapsulating and transplanting cells is a thin membrane-bound polymeric chamber. It is fabricated from biocompatible membranes, which protect allogeneic cells from rejection by the recipient and, when implanted subcutaneously, induce the development of blood capillaries close to the membranes. This vascularization feature provides a rich blood supply to nourish the tissues within the membranes, aids in the communication of implanted cells with the host, and assures rapid uptake of therapeutic molecules. The TheraCyte system is protected by 20 US patents and multiple foreign patent filings in Europe and Japan.

The investigators monitored human insulin secretion and employed bioluminescent imaging to evaluate the maturation, growth, and containment of the encapsulated islet progenitors. They reported in the March 24, 2014, online edition of the journal Stem Cell Research that human insulin was detectable by seven weeks post-transplant and increased 17-fold over the course of eight weeks, yet during this period the biomass of encapsulated cells remained constant. Remarkably, by 20 weeks post-transplant encapsulated cells secreted sufficient levels of human insulin to ameliorate alloxan induced diabetes. Furthermore, bioluminescent imaging revealed that hESCs remained fully contained in the encapsulation device for up to 150 days, the longest period tested.

“Our study critically evaluates some of the potential pitfalls of using stem cells to treat insulin dependent-diabetes,” said senior author Dr. Pamela Itkin-Ansari, assistant professor of pediatrics at the University of California, San Diego and adjunct assistant professor at the Sanford-Burnham Medical Research Institute. “We have shown that encapsulated hESC-derived insulin-producing cells are able to produce insulin in response to elevated glucose without an increase in the mass or their escape from the capsule. These results are important because it means that the encapsulated cells are both fully functional and retrievable.”

“We were thrilled to see that the cells remained fully encapsulated for up to 150 days, the longest period tested,” said Dr. Itkin-Ansari. “Equally important is that we show that the progenitor cells develop glucose-responsiveness without a significant change in mass – meaning they do not outgrow their capsule, and, of course, we want to learn how long a capsule will function once implanted. Given these goals and continued successful results, I expect to see the technology become a treatment option for patients with insulin dependent-diabetes.”

Related Links:

Sanford-Burnham Medical Research Institute
University of California, San Diego
TheraCyte, Inc.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.