Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Fruit Fly Study Leads to New Understanding of How mRNA Regulates Gene Expression

By BiotechDaily International staff writers
Posted on 02 Apr 2014
A study on heat sensitivity in fruit flies has led to a new understanding of how gene expression is regulated by mRNAs in a fashion that is independent of both DNA and protein.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) were studying the genetic mechanism that controls the behavior of a mutant variety of Drosophila that was unusually sensitive to high temperatures. These flies carried a mutated copy of a gene called seizure (sei) that rendered them so sensitive to heat that a rise in temperature of even 10 degrees was sufficient to send them into seizures.

"When we looked at the sei gene, we noticed that there is another gene on the opposite strand of the double-stranded DNA molecule called pickpocket 29 (ppk29)," said senior author Dr. Yehuda Ben-Shahar, assistant professor of biology at the Washington University School of Medicine. "This was interesting because sei codes for a protein ‘gate’ that lets potassium ions out of the neuron and pickpocket 29 codes for a gate that lets sodium ions into the neuron."

The investigators generated a series of transgenic lines of Drosophila with different ratios of sei and ppk29. They reported in the March 18, 2014, online edition of the journal eLife that mRNA originating from ppk29 was regulating the mRNA from the sei gene. The regulatory component of ppk29 was identified as the untranslated 3' UTR end of the mRNA strand. When this section of ppk29 mRNA formed a double stranded segment with complementary DNA from sei it resulted in the destruction of the sei strand through the combination of the Dicer enzyme and RISC (RNA-induced silencing complex) assembly. Thus, the gene coding a sodium channel was found to regulate the expression of the potassium channel gene.

“Our findings show that mRNAS, which are typically thought to act solely as the template for protein translation, can also serve as regulatory RNAs, independent of their protein-coding capacity,” said Dr. Ben-Shahar. “They are not just messengers but also actors in their own right.”

Related Links:

Washington University School of Medicine



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

21 Apr 2015 - 23 Apr 2015
21 Apr 2015 - 23 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.