Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

New Culture Technique Will Promote the Study of Leukemic Stem Cells

By BiotechDaily International staff writers
Posted on 02 Apr 2014
Image: Acute myeloid leukemia cells presenting anomalies in standard growth conditions (top). Acute myeloid leukemia cells preserving their leukemic cell features following in vitro culture with the two chemical molecules referred to in the study (below) (Photo courtesy of the Université de Montréal).
Image: Acute myeloid leukemia cells presenting anomalies in standard growth conditions (top). Acute myeloid leukemia cells preserving their leukemic cell features following in vitro culture with the two chemical molecules referred to in the study (below) (Photo courtesy of the Université de Montréal).
A multidisciplinary team of cancer researchers has developed a method for maintaining leukemic stem cells (LSCs) in culture, which will aid in the study of this class of cancer cells and the development of new drugs.

It has proven difficult to study LSCs, as currently available culture conditions do not prevent their spontaneous differentiation into full-blown acute myeloid leukemia (AML) cells. To overcome these constraints the “Leucégène” research group of investigators at the Université de Montréal (Canada) conducted a high-throughput chemical screen to identify small molecules that could inhibit differentiation and support LSC activity in vitro.

They reported in the February 23, 2014, online edition of the journal Nature Methods that they were able to identify two chemical compounds that, when added to the culture medium, could maintain functional human LSCs alive for at least seven days in vitro. One of the compounds suppressed the aryl-hydrocarbon receptor (AhR) pathway, which is inactive in vivo but rapidly activated ex vivo in AML cells. The other compound, UM729, collaborated with AhR suppressors in preventing AML cell differentiation.

These findings provide newly defined culture conditions for improved ex vivo culture of human LSCs and primary AML cells. “This research breakthrough demonstrates the advantage of working in a multidisciplinary team like the “Leucégène” research group,” said senior author Dr. Guy Sauvageau, professor of medicine at the Université de Montréal. “Access to cells of leukemia patients and to IRIC’s [The Institute for Research in Immunology and Cancer of the Université de Montréal] state-of-the-art facilities are also key factors in pursuing ground-breaking research.”

Related Links:

Université de Montréal



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.