Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

New Culture Technique Will Promote the Study of Leukemic Stem Cells

By BiotechDaily International staff writers
Posted on 02 Apr 2014
Image: Acute myeloid leukemia cells presenting anomalies in standard growth conditions (top). Acute myeloid leukemia cells preserving their leukemic cell features following in vitro culture with the two chemical molecules referred to in the study (below) (Photo courtesy of the Université de Montréal).
Image: Acute myeloid leukemia cells presenting anomalies in standard growth conditions (top). Acute myeloid leukemia cells preserving their leukemic cell features following in vitro culture with the two chemical molecules referred to in the study (below) (Photo courtesy of the Université de Montréal).
A multidisciplinary team of cancer researchers has developed a method for maintaining leukemic stem cells (LSCs) in culture, which will aid in the study of this class of cancer cells and the development of new drugs.

It has proven difficult to study LSCs, as currently available culture conditions do not prevent their spontaneous differentiation into full-blown acute myeloid leukemia (AML) cells. To overcome these constraints the “Leucégène” research group of investigators at the Université de Montréal (Canada) conducted a high-throughput chemical screen to identify small molecules that could inhibit differentiation and support LSC activity in vitro.

They reported in the February 23, 2014, online edition of the journal Nature Methods that they were able to identify two chemical compounds that, when added to the culture medium, could maintain functional human LSCs alive for at least seven days in vitro. One of the compounds suppressed the aryl-hydrocarbon receptor (AhR) pathway, which is inactive in vivo but rapidly activated ex vivo in AML cells. The other compound, UM729, collaborated with AhR suppressors in preventing AML cell differentiation.

These findings provide newly defined culture conditions for improved ex vivo culture of human LSCs and primary AML cells. “This research breakthrough demonstrates the advantage of working in a multidisciplinary team like the “Leucégène” research group,” said senior author Dr. Guy Sauvageau, professor of medicine at the Université de Montréal. “Access to cells of leukemia patients and to IRIC’s [The Institute for Research in Immunology and Cancer of the Université de Montréal] state-of-the-art facilities are also key factors in pursuing ground-breaking research.”

Related Links:

Université de Montréal



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.