Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Novel Culture Technique Generates Large Numbers of Functional Human Muscle Cells

By BiotechDaily International staff writers
Posted on 30 Mar 2014
Image: Muscle cells are stained green in this micrograph of cells grown from embryonic stem cells. Cell nuclei are stained blue; the muscle fibers contain multiple nuclei. Nuclei outside the green fibers are from non-muscle cells (Photo courtesy of Dr. Masatoshi Suzuki, University of Wisconsin).
Image: Muscle cells are stained green in this micrograph of cells grown from embryonic stem cells. Cell nuclei are stained blue; the muscle fibers contain multiple nuclei. Nuclei outside the green fibers are from non-muscle cells (Photo courtesy of Dr. Masatoshi Suzuki, University of Wisconsin).
A novel technique that uses free-floating spherical culture (EZ spheres) in a defined, serum-free culture medium generated large numbers of functional muscle cells from human embryonic stem (hES) and induced pluripotent stem (iPS) cells.

Investigators at the University of Wisconsin (Madison, USA) used the EZ sphere procedure to transform hES and iPS cells into myogenic progenitors by growing the cells in serum-free medium that was supplemented with high concentrations of fibroblast growth factor-2 (FGF-2) and epidermal growth factor (EGF).

They reported in the March 21, 2014, online edition of the journal Stem Cells Translational Medicine that under these culture conditions myogenic progenitors were detectable in the spheres after six weeks of culture and multinucleated myotubes following sphere dissociation and two weeks of terminal differentiation. A high concentration of FGF-2 played a critical role for myogenic differentiation and was necessary for generating myogenic progenitors from pluripotent cells cultured as EZ spheres.

Approximate 40% to 60% of the cells grown using this process matured into either muscle cells or muscle progenitors, a high proportion compared to traditional nongenetic techniques of generating muscle cells from human ES and iPS cells. Furthermore, EZ sphere culture was capable of producing myogenic progenitors from human iPS cells generated from both healthy donors and patients with neuromuscular disorders (including Becker’s muscular dystrophy, spinal muscular atrophy, and familial amyotrophic lateral sclerosis).

"Researchers have been looking for an easy way to efficiently differentiate stem cells into muscle cells that would be allowable in the clinic," said senior author Dr. Masatoshi Suzuki, assistant professor of comparative biosciences at the University of Wisconsin. "The novelty of this technique is that it generates a larger number of muscle stem cells without using genetic modification, which is required by existing methods for making muscle cells. Our protocol can work in multiple ways and so we hope to provide a resource for people who are exploring specific neuromuscular diseases in the laboratory."

Related Links:

University of Wisconsin



RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.