Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Novel Culture Technique Generates Large Numbers of Functional Human Muscle Cells

By BiotechDaily International staff writers
Posted on 30 Mar 2014
Image: Muscle cells are stained green in this micrograph of cells grown from embryonic stem cells. Cell nuclei are stained blue; the muscle fibers contain multiple nuclei. Nuclei outside the green fibers are from non-muscle cells (Photo courtesy of Dr. Masatoshi Suzuki, University of Wisconsin).
Image: Muscle cells are stained green in this micrograph of cells grown from embryonic stem cells. Cell nuclei are stained blue; the muscle fibers contain multiple nuclei. Nuclei outside the green fibers are from non-muscle cells (Photo courtesy of Dr. Masatoshi Suzuki, University of Wisconsin).
A novel technique that uses free-floating spherical culture (EZ spheres) in a defined, serum-free culture medium generated large numbers of functional muscle cells from human embryonic stem (hES) and induced pluripotent stem (iPS) cells.

Investigators at the University of Wisconsin (Madison, USA) used the EZ sphere procedure to transform hES and iPS cells into myogenic progenitors by growing the cells in serum-free medium that was supplemented with high concentrations of fibroblast growth factor-2 (FGF-2) and epidermal growth factor (EGF).

They reported in the March 21, 2014, online edition of the journal Stem Cells Translational Medicine that under these culture conditions myogenic progenitors were detectable in the spheres after six weeks of culture and multinucleated myotubes following sphere dissociation and two weeks of terminal differentiation. A high concentration of FGF-2 played a critical role for myogenic differentiation and was necessary for generating myogenic progenitors from pluripotent cells cultured as EZ spheres.

Approximate 40% to 60% of the cells grown using this process matured into either muscle cells or muscle progenitors, a high proportion compared to traditional nongenetic techniques of generating muscle cells from human ES and iPS cells. Furthermore, EZ sphere culture was capable of producing myogenic progenitors from human iPS cells generated from both healthy donors and patients with neuromuscular disorders (including Becker’s muscular dystrophy, spinal muscular atrophy, and familial amyotrophic lateral sclerosis).

"Researchers have been looking for an easy way to efficiently differentiate stem cells into muscle cells that would be allowable in the clinic," said senior author Dr. Masatoshi Suzuki, assistant professor of comparative biosciences at the University of Wisconsin. "The novelty of this technique is that it generates a larger number of muscle stem cells without using genetic modification, which is required by existing methods for making muscle cells. Our protocol can work in multiple ways and so we hope to provide a resource for people who are exploring specific neuromuscular diseases in the laboratory."

Related Links:

University of Wisconsin



Channels

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.