Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Cathepsin B Inhibitors Ease Alzheimer's Symptoms by Blocking Amyloid Plaque Formation

By BiotechDaily International staff writers
Posted on 27 Mar 2014
Image: Micrograph showing amyloid-beta (brown) in senile plaques of the cerebral cortex (upper left of image) and cerebral blood vessels (right of image) with immunostaining (Photo courtesy of Wikimedia Commons).
Image: Micrograph showing amyloid-beta (brown) in senile plaques of the cerebral cortex (upper left of image) and cerebral blood vessels (right of image) with immunostaining (Photo courtesy of Wikimedia Commons).
Neurobiologists studying the molecular processes underlying Alzheimer's disease have identified the mechanism that explains how inhibition of cathepsin B activity blocks formation of the toxic amyloid-beta (Abeta) peptides that characterize the disease.

Cathepsin B was once suspected as being a protease participating in the conversion of beta-amyloid precursor protein into the amyloid plaques found in Alzheimer's disease patients. However, this function is now known to be mediated by BACE1 protease. It is now thought that cathepsin B can degrade beta-amyloid precursor protein into harmless fragments. Thus, it is conceivable cathepsin B may play a pivotal role in the natural defense against Alzheimer's disease.

However, new findings reported in the March 4, 2014, online edition of the Journal of Alzheimer’s Disease by investigators at the University of California, San Diego (USA) and colleagues at the biopharmaceutical company American Life Science Pharmaceuticals, Inc. (San Diego, CA, USA) have altered this concept by showing that cathepsin B gene knockout or its reduction by an enzyme inhibitor blocked creation of key neurotoxic amyloid-beta peptides linked to Alzheimer’s disease.

Using various mouse models, the investigators showed that oral administration of E64d a cysteine protease inhibitor of cathepsin B, not only reduced the build-up of beta-amyloid in the brains of these animals, but it also caused substantial improvement in memory.

“This is an exciting finding,” said senior author Dr. Vivian Hook, professor of pharmaceutical sciences at the University of California, San Diego. “It addresses a new target—cathepsin B—and an effective, safe small molecule, E64d, to reduce the pGlu-Abeta that initiates development of the disease’s neurotoxicity. No other work in the field has addressed protease inhibition for reducing pGlu-Abeta of Alzheimer's disease.”

Related Links:

University of California, San Diego
American Life Science Pharmaceuticals, Inc.



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.