Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Metastasis Drug Target Identified

By BiotechDaily International staff writers
Posted on 26 Mar 2014
Image: LIMD2, a protein that can drive metastasis (Photo courtesy of the Wistar Institute).
Image: LIMD2, a protein that can drive metastasis (Photo courtesy of the Wistar Institute).
Cancer researchers have identified a protein that is critically linked to processes leading to metastasis, the deadly spread of cancer away from the primary tumor.

Investigators at The Wistar Institute (Philadelphia, PA, USA) examined the role of "LIM domain" proteins in metastasis. LIM domains are protein structural domains, composed of two contiguous zinc finger domains, separated by a two-amino acid residue hydrophobic linker. LIM domain containing proteins have been shown to play roles in cytoskeletal organization, organ development, and oncogenesis. LIM domains mediate protein-to-protein interactions that are critical to cellular processes.

The investigators focused their attention on LIMD2, a mechanistically undefined LIM-only protein originally found to be overexpressed in metastatic lesions but absent in the matched primary tumor.

They determined the solution structure of LIMD2 using nuclear magnetic resonance and reported in the March 2014 issue of the journal Cancer Research that it revealed a classic LIM-domain structure that was highly related to LIM1 of PINCH1, a core component of the integrin-linked kinase-parvin-pinch complex. Structural and biochemical analyses revealed that LIMD2 bound directly to the kinase domain of integrin-linked kinase (ILK) near the active site and strongly activated ILK kinase activity. Cells that lacked ILK failed to respond to the induction of invasion by LIMD2.
LIMD2 levels in fresh and archival tumors positively correlated with cell motility, metastatic potential, and grade, including bladder, melanoma, breast, and thyroid tumors. LIMD2 directly contributed to these cellular phenotypes as shown by overexpression, knockdown, and reconstitution experiments in cell culture models.

“This is the result of a five year effort to characterize LIMD2, which is a new protein that we found to be expressed only in metastatic lesions, and not in the primary tumor or in normal tissues or organs,” said senior author Dr. Frank Rauscher III, a professor in the tumor microenvironment and metastasis program at The Wistar Institute. “LIMD2 is a great candidate for targeting with a drug, which would inhibit the ability of these cells to leave a primary tumor and to colonize other organs. We contend that LIMD2 is a marker that could help physicians profile tumors, and a potential drug target that could yield a potent therapy for a variety of advanced cancers, perhaps in combination with existing or emerging therapies.”

“Cancer metastasis is really the final frontier in cancer medicine, because metastasis kills,” said Dr. Rauscher. “We can treat a primary tumor, usually successfully, with surgery, drugs, chemotherapy, or radiation, but once the cancer spreads to organs throughout the body it frequently becomes unstoppable.”

Related Links:

The Wistar Institute


Drug Discovery

view channel
Image: Endoscopic image of a bowel section known as the sigmoid colon afflicted with ulcerative colitis. The internal surface of the colon is blotchy and broken in places (Photo courtesy of Wikimedia Commons).

Orally Delivered Curcumin-Loaded Microparticles Effectively Treat Mouse Model of Ulcerative Colitis

Microparticles (MPs) loaded with the efficient anti-inflammatory agent curcumin were found to effectively treat a mouse model of ulcerative colitis. Ulcerative colitis is a chronic relapsing disease... Read more

Lab Technologies

view channel

New Genomic Research Kit Simplifies Exome Studies

An exciting new tool is now available for biotech researchers working in the field of genomic analysis. The human exome is critical to our genetic make-up and is generally accepted as having the greatest influence on how the genetic blueprint is utilized. The exome is defined as all coding exons in the genome and is... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.