We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Transformed Intestinal Cells Produce Insulin in Novel Diabetes Treatment

By LabMedica International staff writers
Posted on 25 Mar 2014
Print article
Image: Insulin-expressing cells (red) arising within the intestinal crypts (green) of a mouse that received three beta-cell “reprogramming factors” (Photo courtesy of Dr. Ben Stanger, University of Pennsylvania).
Image: Insulin-expressing cells (red) arising within the intestinal crypts (green) of a mouse that received three beta-cell “reprogramming factors” (Photo courtesy of Dr. Ben Stanger, University of Pennsylvania).
A population of intestinal cells was found to be capable of morphing into insulin-producing beta-cells, which may pave the way a novel treatment for diabetes.

Type I diabetes mellitus, also known as insulin dependent diabetes, is believed to be caused by an autoimmune response where the body's own immune system attacks the beta cells and destroys them. The body can no longer produce and secrete insulin into the blood and fails to regulate the blood glucose concentration.

Investigators at the University of Pennsylvania (Philadelphia, USA) had shown previously that introduction of three beta-cell transcription factors—Pdx1 (P), MafA (M), and Ngn3 (N) [collectively called PMN] into the acinar cells of the pancreas could cause these cells to transform into insulin-producing beta-like cells.

In the current study, the investigators sought other readily available cell types that could be transformed into beta-like cells. To this end they performed an in vivo screen by expressing the three beta cell “reprogramming factors” in a wide spectrum of tissues.

They reported in the March 6, 2014, online edition of the journal Cell Reports that in a mouse model the transient expression of PMN in intestinal cells promoted the rapid conversion of intestinal crypt cells into endocrine cells, which coalesced into “neoislets” below the crypt base. Neoislet cells expressed insulin and showed ultrastructural features of beta cells. Importantly, intestinal neoislets were glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Furthermore, PMN expression in human intestinal “organoids” stimulated the conversion of intestinal epithelial cells into beta-like cells.

“Our results demonstrate that the intestine could be an accessible and abundant source of functional insulin-producing cells,” said senior author Dr. Ben Z. Stanger, assistant professor of medicine at the University of Pennsylvania. “Our ultimate goal is to obtain epithelial cells from diabetes patients who have had endoscopies, expand these cells, add PMN to them to make beta-like cells, and then give them back to the patient as an alternate therapy. There is a long way to go for this to be possible, including improving the functional properties of the cells, so that they more closely resemble beta cells, and figuring out alternate ways of converting intestinal cells to beta-like cells without gene therapy.”

“It is a powerful idea that if you have the right combination of transcription factors you can make any cell into any other cell. It is cellular alchemy,” said Dr. Stanger.

Related Links:

University of Pennsylvania


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.