Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Identification of Rare Mutation May Lead to Heart Repair Gene Therapy

By BiotechDaily International staff writers
Posted on 17 Mar 2014
Image: In the heart muscle cell above, the arrows show an early sign of replication (Photo courtesy of Johns Hopkins University).
Image: In the heart muscle cell above, the arrows show an early sign of replication (Photo courtesy of Johns Hopkins University).
Identification of the mutation responsible for an exceedingly rare type of heart defect in infants may pave the way for a gene therapy approach for regenerating adult heart tissue damaged by heart attack or disease.

Investigators at Johns Hopkins University (Baltimore, MD, USA) had been examining the hearts removed from two infant siblings during heart transplant surgery. Initial findings were that cells in the heart muscle (cardiomyocytes) were continuing to divide despite the fact that the infants had passed the age by which such cell division has normally terminated. The investigators established that the infants' genomes contained two abnormal copies of the ALMS1 gene. The same mutation was then found in five infant patients, including two sets of siblings, at the Hospital for Sick Children (Toronto, Canada).

The investigators reported in the March 4, 2014, online edition of the journal Nature Communications that the ALMS1 gene mutation caused a deficiency of the Alström protein that impaired the ability of the heart cells to stop dividing. In a genetically engineered mouse model, animals that lacked the ALMS1 gene displayed increased cardiomyocyte proliferation at two weeks postnatal compared with wild-type littermates. Furthermore, cultured cardiomyocytes divided abnormally after exposure to siRNA (short interfering RNA) that blocked expression of the ALMS1 gene.

“This study offers hope that we can someday find a way to restore the ability of heart cells to divide in response to injury and to help patients recover from many kinds of cardiac dysfunction,” said senior author Dr. Daniel P. Judge, associate professor of cardiology at Johns Hopkins University. “Things usually heal up well in many parts of the body through cell division, except in the heart and the brain. Although other work has generated a lot of excitement about the possibility of treatment with stem cells, our research offers an entirely different direction to pursue in finding ways to repair a damaged heart.”

“The children who helped us recognize the importance of this gene were born with a rare condition that leads to heart failure and many other problems, such as diabetes, obesity, blindness, and deafness,” said Dr. Judge. “Now we hope to apply these discoveries to help millions of others with heart disease.”

Related Links:

Johns Hopkins University
The Hospital for Sick Children
 


Channels

Drug Discovery

view channel

Curcumin Used to Treat Alzheimer’s Disease

Curcumin, a natural substance found in the spice turmeric, has been used by many Asian cultures for centuries. Now, new research suggests that a close chemical analog of curcumin has properties that may make it useful as a treatment for Alzheimer’s disease. “Curcumin has demonstrated ability to enter the brain, bind... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.