Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

Identification of Rare Mutation May Lead to Heart Repair Gene Therapy

By BiotechDaily International staff writers
Posted on 17 Mar 2014
Image: In the heart muscle cell above, the arrows show an early sign of replication (Photo courtesy of Johns Hopkins University).
Image: In the heart muscle cell above, the arrows show an early sign of replication (Photo courtesy of Johns Hopkins University).
Identification of the mutation responsible for an exceedingly rare type of heart defect in infants may pave the way for a gene therapy approach for regenerating adult heart tissue damaged by heart attack or disease.

Investigators at Johns Hopkins University (Baltimore, MD, USA) had been examining the hearts removed from two infant siblings during heart transplant surgery. Initial findings were that cells in the heart muscle (cardiomyocytes) were continuing to divide despite the fact that the infants had passed the age by which such cell division has normally terminated. The investigators established that the infants' genomes contained two abnormal copies of the ALMS1 gene. The same mutation was then found in five infant patients, including two sets of siblings, at the Hospital for Sick Children (Toronto, Canada).

The investigators reported in the March 4, 2014, online edition of the journal Nature Communications that the ALMS1 gene mutation caused a deficiency of the Alström protein that impaired the ability of the heart cells to stop dividing. In a genetically engineered mouse model, animals that lacked the ALMS1 gene displayed increased cardiomyocyte proliferation at two weeks postnatal compared with wild-type littermates. Furthermore, cultured cardiomyocytes divided abnormally after exposure to siRNA (short interfering RNA) that blocked expression of the ALMS1 gene.

“This study offers hope that we can someday find a way to restore the ability of heart cells to divide in response to injury and to help patients recover from many kinds of cardiac dysfunction,” said senior author Dr. Daniel P. Judge, associate professor of cardiology at Johns Hopkins University. “Things usually heal up well in many parts of the body through cell division, except in the heart and the brain. Although other work has generated a lot of excitement about the possibility of treatment with stem cells, our research offers an entirely different direction to pursue in finding ways to repair a damaged heart.”

“The children who helped us recognize the importance of this gene were born with a rare condition that leads to heart failure and many other problems, such as diabetes, obesity, blindness, and deafness,” said Dr. Judge. “Now we hope to apply these discoveries to help millions of others with heart disease.”

Related Links:

Johns Hopkins University
The Hospital for Sick Children
 


Channels

Drug Discovery

view channel
Image: The microneedle patch can dissolve in the skin, delivering the flu vaccine painlessly (Photo courtesy of Dr. Shinsaku Nakagawa, Osaka University).

Japanese Researchers Demonstrate Novel Transcutaneous Influenza Vaccination Using a Dissolving Microneedle Patch

Vaccination via a biodegradable microneedle patch was shown to generate immune response to various strains of the influenza virus that were equal to or stronger than those induced by traditional hypodermic... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Partners to Seek Novel Drugs to Treat Fibrotic Diseases

A global biopharmaceutical company and an American university hospital-based research institute have agreed to collaborate on the diagnosis and cure of fibrotic diseases. Fibrotic diseases such as scleroderma, renal fibrosis, and idiopathic pulmonary fibrosis are characterized by the gradual formation of excess fibrous... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.