We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Gene Therapy Strategy Regenerates Heart Muscle Cells in Pig Trials

By LabMedica International staff writers
Posted on 03 Mar 2014
Print article
Findings of a preclinical study have shown the effectiveness of new gene approach to regenerate heart muscle in large lab animals following a heart attack.

The research was led by Dr. Hina Chaudhry, founder of VentriNova, and director of cardiovascular regenerative medicine at Icahn School of Medicine at Mount Sinai (New York, NY, USA). In the study, not only did the treated heart tissue regenerate, but the researchers saw evidence of the formation of new heart muscle cells, along with a significant improvement in the heart’s pumping function.

The study was published February 19, 2014, in the journal Science Translational Medicine. The investigators evaluated their gene therapy in pigs as porcine cardiac anatomy and physiology is nearly the same as humans. They administered a gene therapy vector carrying cyclin A2 one week after a myocardial infarction to the experimental group and a null vector to the control group. VentriNova (New York, NY, USA), a regenerative medicine company, is the developer of the gene therapy approach.

The study revealed that the group treated with cyclin A2 demonstrated substantial improvement in cardiac contractile function six weeks later with cellular evidence of cardiac muscle cell division and evidence of new cardiac muscle cells being formed adjacent to the injured heart tissue. Furthermore, research of adult cardiac muscle cells isolated and placed in petri dishes demonstrated complete cell division with preservation of the contractile units of the heart muscle cells in the daughter cells. 

“To our knowledge, this is the only regenerative strategy thus far able to actually create new cardiac muscle cells in the diseased heart of a large animal closely mimicking humans. This approach may have the potential to revolutionize therapy for patients suffering from heart attacks by possibly reversing cardiac damage,” said Dr. Chaudhry.

Dr. Chaudhry is a named inventor on patents relating to methods to prevent heart degeneration. VN-100, the company’s lead product, is a viral vector-based gene therapy that induces cardiomyocyte division in adult heart tissue by delivery of cyclin A2, which is encoded by the gene (CCNA2) that instructs embryonic heart cells to divide and grow, and is typically silenced in mammalian hearts after birth. 

Because the CCNA2 gene is silenced, adult heart muscle cells cannot divide readily to repair and regenerate following a heart attack. Delivering cyclin A2 into the heart following a heart attack has now been shown to reverse cardiac damage by stimulating growth of new heart muscle cells. A series of Investigational New Drug (IND)-enabling studies have begun, and this article marks the fifth scientific publication supporting the potential of this approach.

VentriNova is a preclinical stage cardiac regenerative gene therapy company that specializes in the reversal of cardiac damage by triggering intrinsic repair pathways to generate de novo heart muscle cells. The company’s science and technology is focused on development of biologic and small molecule regulators of the cyclin A2 gene—the key switch mediating heart cell division. This technology has demonstrated that modulation of the cyclin A2 gene stimulates endogenous growth of new heart muscle cells (myocytes) and significantly enhances cardiac contractile function in both small and large animals. 

Related Links:

VentriNova 
Icahn School of Medicine at Mount Sinai
 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.