Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Researchers Describe Novel Methods for Disabling Bacterial Proteases

By BiotechDaily International staff writers
Posted on 27 Feb 2014
Image: The target: bacterial protease ClpP (Photo courtesy of Technische Universitaet Muenchen).
Image: The target: bacterial protease ClpP (Photo courtesy of Technische Universitaet Muenchen).
Image: Several small molecules are able to split the protease ClpP into inactive smaller units, which massively disturbs the bacterial metabolism ClpP (Photo courtesy of Technische Universitaet Muenchen).
Image: Several small molecules are able to split the protease ClpP into inactive smaller units, which massively disturbs the bacterial metabolism ClpP (Photo courtesy of Technische Universitaet Muenchen).
A paper described previously unrecognized mechanisms that can be used to permanently deactivate critical bacteriological proteases.

Proteases are responsible for the pathogenic effects of many kinds of bacteria, and considerable research effort is involved in developing effective ways of inhibiting their action.

Investigators at the Technische Universitaet Muenchen (Munich, Germany) recently described novel approaches for silencing the activity of bacterial ClpP protease. In the January 29, 2014, issue of the Journal of the American Chemical Society they presented a novel mechanism of protease inhibition that relied on active-site-directed small molecules that disassembled the protease complex. They showed the applicability of this mechanism within the ClpP protease family, whose members are tetradecameric serine proteases and serve as regulators of several cellular processes, including homeostasis and virulence.

In addition, they reported the selective beta-sultam-induced dehydroalanine formation of the active site serine. This reaction proceeded through sulfonylation and subsequent elimination, thereby obliterating the catalytic charge relay system. The identity of the dehydroalanine was confirmed by mass spectrometry and crystallography. Activity-based protein profiling experiments suggested the formation of a dehydroalanine moiety in living Staphylococcus aureus cells upon beta-sultam treatment.

The mechanisms described here point towards the possibility of developing protease inhibitors that do not rely on complete blocking of the enzymes' catalytic or binding sites.

“ClpP inhibitors used in the past have one decisive disadvantage,” said senior author Dr. Stephan Sieber, professor of organic chemistry at the Technische Universitaet Muenchen. “They do not permanently disarm the proteins, but only work for a few hours. On top of that, to be effective they must attack all active centers of the protein.”

Related Links:

Technische Universitaet Muenchen



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.