Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Researchers Describe Novel Methods for Disabling Bacterial Proteases

By BiotechDaily International staff writers
Posted on 27 Feb 2014
Print article
Image: The target: bacterial protease ClpP (Photo courtesy of Technische Universitaet Muenchen).
Image: The target: bacterial protease ClpP (Photo courtesy of Technische Universitaet Muenchen).
Image: Several small molecules are able to split the protease ClpP into inactive smaller units, which massively disturbs the bacterial metabolism ClpP (Photo courtesy of Technische Universitaet Muenchen).
Image: Several small molecules are able to split the protease ClpP into inactive smaller units, which massively disturbs the bacterial metabolism ClpP (Photo courtesy of Technische Universitaet Muenchen).
A paper described previously unrecognized mechanisms that can be used to permanently deactivate critical bacteriological proteases.

Proteases are responsible for the pathogenic effects of many kinds of bacteria, and considerable research effort is involved in developing effective ways of inhibiting their action.

Investigators at the Technische Universitaet Muenchen (Munich, Germany) recently described novel approaches for silencing the activity of bacterial ClpP protease. In the January 29, 2014, issue of the Journal of the American Chemical Society they presented a novel mechanism of protease inhibition that relied on active-site-directed small molecules that disassembled the protease complex. They showed the applicability of this mechanism within the ClpP protease family, whose members are tetradecameric serine proteases and serve as regulators of several cellular processes, including homeostasis and virulence.

In addition, they reported the selective beta-sultam-induced dehydroalanine formation of the active site serine. This reaction proceeded through sulfonylation and subsequent elimination, thereby obliterating the catalytic charge relay system. The identity of the dehydroalanine was confirmed by mass spectrometry and crystallography. Activity-based protein profiling experiments suggested the formation of a dehydroalanine moiety in living Staphylococcus aureus cells upon beta-sultam treatment.

The mechanisms described here point towards the possibility of developing protease inhibitors that do not rely on complete blocking of the enzymes' catalytic or binding sites.

“ClpP inhibitors used in the past have one decisive disadvantage,” said senior author Dr. Stephan Sieber, professor of organic chemistry at the Technische Universitaet Muenchen. “They do not permanently disarm the proteins, but only work for a few hours. On top of that, to be effective they must attack all active centers of the protein.”

Related Links:

Technische Universitaet Muenchen



Print article

Channels

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A 3D nanofiber net formed by the supergelators to trap oil molecules (Photo courtesy of IBN at A*STAR / Institute of Bioengineering and Nanotechnology).

Effective Cleanup with Smart Material That Forms Oil-Trapping Net

Researchers have developed supergelators – an organic oil-scavenging material that rapidly forms a 3D net to trap oil molecules, gelatinizing into solidified masses that can be more easily removed from... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.