Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
GLOBETECH PUBLISHING
JIB

A Unique Mycoplasma Protein Generically Binds All Types of Antibodies and Blocks Antigen Binding

By BiotechDaily International staff writers
Posted on 20 Feb 2014
Image: Protein M, an unusual bacterial protein, attaches to virtually any antibody, possibly helping bacteria establish long-term infections. Compared to thousands of known structures, this protein appears to be unique (Photo courtesy of the Scripps Research Institute).
Image: Protein M, an unusual bacterial protein, attaches to virtually any antibody, possibly helping bacteria establish long-term infections. Compared to thousands of known structures, this protein appears to be unique (Photo courtesy of the Scripps Research Institute).
A team of molecular biologists has isolated a bacterial protein that binds to all types of antibodies and prevents them attaching to their specific antigens.

The novel protein—Protein M—may join the ranks of other nonspecific antibody binding proteins such as Protein A and Protein G as a tool for researchers seeking to purify antibodies from mixtures of other biological molecules.

Investigators at The Scripps Research Institute (La Jolla, CA, USA) discovered Protein M, which was being produced by the primitive bacterium Mycoplasma genitalium, during a study on the relationship between chronic bacterial infection and myeloma.

After isolating the protein, the investigators used X-ray crystallography and other techniques, including electron microscopy, to determine Protein M's three-dimensional atomic structure while the protein was bound to various human antibodies. They reported in the February 7, 2014, issue of the journal Science that the crystal structure of the external domain of transmembrane Protein M differed from other known protein structures, as did its mechanism of antibody binding. Protein M bound with high affinity to all types of human and nonhuman immunoglobulin G, predominantly through attachment to the conserved portions of the variable region of the kappa and gamma light chains. Furthermore, Protein M blocked antibody-antigen binding, likely because of its large C-terminal domain extending over the antibody-combining site, blocking entry to large antigens.

The investigators suggested that the most immediate use for Protein M will likely be as a tool for immobilizing antibodies in mixtures and cell cultures as a preparatory step in the generation of highly purified antibodies for research and drug manufacturing. “It may be the most useful antibody purification device ever found,” said senior author Dr. Richard A. Lerner, professor of immunochemistry at The Scripps Research Institute.

Related Links:

The Scripps Research Institute



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: Neurons (greenish yellow) attach to silk-based scaffold (blue) creating functional networks throughout the scaffold pores (dark areas) (Photo courtesy of Tufts University).

Functional 3D Brain-Like Tissue Model Bioengineered

Researchers recently reported on the development of the first complex, three-dimensional (3D) model comprised of brain-like cortical tissue that displays biochemical and electrophysiologic responses, and... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.