Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL
Demo Company

Cardiac Tissue Generated from Human Embryonic Stem Cells Displays Aspects of Both Mature and Immature Heart Muscle

By BiotechDaily International staff writers
Posted on 19 Feb 2014
An in vitro model system based on cardiac tissue generated from human embryonic stem cells displayed some of the physiological responses known to occur in the natural adult human heart while other responses more closely mimicked the immature or newborn human heart.

Cardiac experimental biology and translational research would benefit from an in vitro surrogate for human heart muscle. To this end, investigators at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) studied the structural and functional properties and interventional responses of human engineered cardiac tissues (hECTs) compared to normal human heart tissues.

After transforming human embryonic stem cells into hECTs the investigators mixed them with collagen and cultured them on force-sensing elastomer devices that exercised the tissue and permitted measurement of its contractile force throughout the culture process.

Results published in the February 2014 issue of the FASEB Journal revealed that within seven to 10 days, the induced cardiac cells self-assembled into a three-dimensional strip of tissue that beat spontaneously in a manner similar to natural heart muscle. The cultured strips of tissue, which were able to survive for at least a month, displayed contractile activity in a rhythmic pattern of 70 beats per minute on average.

The heart tissue model responded to electrical and chemical stimulation and was able to incorporate new genetic information delivered by adenovirus gene therapy. During functional analysis, the hECTs displayed some responses known to occur in the natural adult human heart, while other responses more closely mimicked the immature or newborn human heart.

"We hope that our human engineered cardiac tissues will serve as a platform for developing reliable models of the human heart for routine laboratory use," said senior author Dr. Kevin D. Costa, associate professor of cardiology and at the Icahn School of Medicine at Mount Sinai. "This could help accelerate and revolutionize cardiology research by improving the ability to efficiently discover, design, develop, and deliver new therapies for the treatment of heart disease, and by providing more efficient screening tools to identify and prevent cardiac side effects, ultimately leading to safer and more effective treatments for patients suffering from heart disease."

Related Links:

Icahn School of Medicine at Mount Sinai



Channels

Drug Discovery

view channel
Image: Cancer cells were treated with a control (left) and the overstimulating compound MCB-613 (right) (Photo courtesy of Dr. Lei Wang, Baylor University College of Medicine).

Drug Candidate Propels Cancer Cells into Fatal Overdrive

A candidate drug that destroys cancer cells by stimulating them to produce more proteins than the cells can actually process was shown to kill a wide variety of cancer cells in culture and to inhibit tumor... Read more

Lab Technologies

view channel
Image: The Synergy Neo2 Multi-Mode Reader recently received Cisbio HTRF certification (Photo courtesy of BioTek Instruments Inc.).

High-Speed Multimode Microplate Reader Receives Homogenous Time-Resolved Fluorescence Certification

A new high-performance, high-speed microplate reader has received HTRF (homogenous time-resolved fluorescence) accreditation that certifies that it complies with standards for detection set by a major... Read more

Business

view channel

Innovative Microbial Diagnostics Developer Acquired by Biomedical Giant

A biotech company noted for its development of innovative products in the field of molecular microbiology diagnostics has been acquired by one of the world's largest biomedical corporations. GeneWEAVE BioSciences, Inc.(Los Gatos, CA, USA) and Roche (Basel, Switzerland) have announced that Roche will be purchasing the... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.