Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

X-Ray Crystallography Reveals the Two Faces of Flavivirus Nonstructural Protein

By BiotechDaily International staff writers
Posted on 17 Feb 2014
Image: The external face of the Flavivirus NS1 protein (sugars in grey balls) is exposed on infected cell surfaces where it can interact with the immune system. This face is also exposed in secreted NS1 particles present in patient sera. The background image shows artificial membranes coated with the NS1 protein (Photo courtesy of the University of Michigan).
Image: The external face of the Flavivirus NS1 protein (sugars in grey balls) is exposed on infected cell surfaces where it can interact with the immune system. This face is also exposed in secreted NS1 particles present in patient sera. The background image shows artificial membranes coated with the NS1 protein (Photo courtesy of the University of Michigan).
High-resolution X-ray crystallography and electron microscopy have revealed that the Flavivirus NS1 (nonstructural protein 1) has two distinct faces, one that interacts with the interior of the infected host cell and the other that is exposed to antiviral elements in the host's immune system.

Flaviviruses are responsible for several severe diseases of humans including dengue fever, West Nile fever, tick-borne encephalitis, and yellow fever. All the flaviviruses produce nonstructural protein 1 (NS1), which functions in genome replication as an intracellular dimer and in immune system evasion as a secreted hexamer. In general, nonstructural proteins are encoded by the viral genome and are produced in the organisms they infect, but are not packaged into the virus particles. Some of these proteins may play roles within the infected cell during virus replication or act in regulation of virus replication or virus assembly.

Investigators at the University of Michigan (Ann Arbor, USA) and colleagues at Purdue University (Lafayette, IN, USA) chose X-ray crystallography as an approach to developing a better understanding of how NS1 functions.

The investigators isolated and crystallized NS1 from Dengue virus and West Nile virus. They then created a three-dimensional atomic structure map of the protein crystals based on data obtained from X-ray crystallography carried out at the Advanced Photon Source at the Argonne National Laboratory (Illinois, USA). Subsequently, electron microscopy was used to elucidate how NS1 associated with membranes of infected cells.

The investigators reported the crystal structures for full-length, glycosylated NS1 from West Nile and dengue viruses in the February 6, 2014, online edition of the journal Science. Their results revealed that the NS1 hexamer in crystal structures was similar to a solution hexamer visualized by single-particle electron microscopy. Recombinant NS1 bound to lipid bilayers and remodeled large liposomes into lipoprotein nanoparticles. The NS1 structures revealed distinct domains for membrane association of the dimer and interactions with the immune system, and will form a basis for elucidating the molecular mechanism of NS1 function.

"Isolating the protein in order to study it has been a challenge for researchers," said senior author Dr. Janet Smith, professor of biological chemistry at the University of Michigan. "Once we discovered how to do that, it crystallized beautifully. Seeing the design of this key protein provides a target for a potential vaccine or even a therapeutic drug."

"The two faces of NS1 define the regions responsible for its two major functions," said Dr. Smith. "This understanding will guide future research into dissecting and targeting these regions in disease treatment or prevention. We are now collaborating with the Purdue virologists to understand exactly how the two faces of NS1 help the virus survive and thrive in patients. These studies are the next steps toward a vaccine or an antiviral drug."

Related Links:

University of Michigan
Purdue University
Argonne National Laboratory



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.