Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Enzyme Deficiency Improves Clinical Picture in Mouse Model of Gaucher's Disease

By BiotechDaily International staff writers
Posted on 10 Feb 2014
Image: Elevation of RIPK3 in nuclei of neurons (red; arrows) from neuronopathic Gaucher's disease mice (Photo courtesy of Dr. Anthony Futerman, Weizmann Institute of Science).
Image: Elevation of RIPK3 in nuclei of neurons (red; arrows) from neuronopathic Gaucher's disease mice (Photo courtesy of Dr. Anthony Futerman, Weizmann Institute of Science).
Blocking the activity of a specific enzyme reversed the clinical symptoms of Gaucher's disease (GD) in a mouse model of this hereditary lipid storage disease.

GD is a hereditary disease caused by a recessive mutation in a gene located on chromosome 1 that causes a deficiency of the enzyme glucocerebrosidase. This enzyme acts on the fatty acid glucosylceramide, and when the enzyme is defective, glucosylceramide accumulates, particularly in white blood cells, most often macrophages. Glucosylceramide can also collect in the spleen, liver, kidneys, lungs, brain, and bone marrow. Clinical manifestations may include enlarged spleen and liver, liver malfunction, skeletal disorders and bone lesions that may be painful, severe neurological complications, swelling of lymph nodes, distended abdomen, a brownish tint to the skin, anemia, low blood platelets and yellow fatty deposits on the white of the eye.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) examined the role of the enzyme Ripk3 (receptor-interacting serine-threonine-protein kinase 3) in GD. Ripk3, the product of the RIPK3 gene, is predominantly localized to the cytoplasm, and can undergo nucleocytoplasmic shuttling dependent on novel nuclear localization and export signals. It is a component of the tumor necrosis factor (TNF) receptor-I signaling complex, and can induce apoptosis and weakly activate the transcription factor NF-kappaB.

To study the relationship between Ripk3 and GD the investigators used a GD mouse model that included animals with and without active Ripk3. Results published in the January 19, 2014, online edition of the journal Nature Medicine revealed that Ripk3 deficiency substantially improved the clinical course of GD in the mice, with increased survival and motor coordination and salutary effects on cerebral as well as hepatic injury. Furthermore, the lifespan of these mice was remarkably increased, from approximately 35 days to more than 170 days.

“If successful, the new target could be used as either a complementary or alternative therapy for Gaucher's disease, and with RIPK3 proving to be a "hot" cellular pathway in various pathologies, these results may also have implications in other neurodegenerative diseases, including related diseases such as Krabbe disease, and potentially other devastating brain diseases,” said senior author Dr. Anthony Futerman, professor of biological chemistry at the Weizmann Institute of Science.

Related Links:

Weizmann Institute of Science
 


comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.