Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Nanoparticle Therapy Reduces Plaque Inflammation and Lowers Risk of Heart Attack or Stroke

By BiotechDaily International staff writers
Posted on 06 Feb 2014
Image: A novel HDL nanoparticle (red) loaded with a statin drug, specifically targets and locally treats inflammatory macrophage cells (green) hiding inside high-risk plaque within blood vessels (Photo courtesy of Mount Sinai Medical Center).
Image: A novel HDL nanoparticle (red) loaded with a statin drug, specifically targets and locally treats inflammatory macrophage cells (green) hiding inside high-risk plaque within blood vessels (Photo courtesy of Mount Sinai Medical Center).
Reconstituted HDL (high-density lipoprotein) nanoparticles were used to transport inflammation-retarding statins to atherosclerotic plaques where the drug acted to reduce arterial blockage that could cause heart attack or stroke.

Inflammation is a key feature of atherosclerosis and a target for therapy. While statins are known to have potent anti-inflammatory properties, they cannot be exploited fully as an oral statin therapy due to low systemic bioavailability.

Investigators at Mount Sinai School of Medicine (New York, NY, USA) sought to concentrate the anti-inflammatory benefits of statins by incorporating them into nanoparticles that would accumulate at sites of inflammation within the blood vessels. For this purpose, they designed an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle capable of delivering statins directly to atherosclerotic plaques.

They reported in the January 20, 2014, online edition of the journal Nature Communications that they had initially demonstrated the anti-inflammatory effect of statin-rHDL in vitro and showed that this effect was mediated through the inhibition of the mevalonate pathway. They also applied statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and showed that the nanoparticles accumulated in atherosclerotic lesions in which they directly affected plaque macrophages. Finally, they demonstrated that a three-month low-dose statin-rHDL treatment regimen inhibited plaque inflammation progression, while a one-week high-dose regimen markedly decreased inflammation in advanced atherosclerotic plaques.

“Not only could the HDL nanotherapy potentially avert repeat heart attacks, it may also have the power to reduce recurrent strokes caused by clots in brain arteries, ” said senior author, Dr. Willem Mulder, associate professor of radiology at Mount Sinai School of Medicine. “We envision that a safe and effective HDL nanotherapy could substantially lower cardiovascular events during the critical period of vulnerability after a heart attack or stroke. While we have much more to do to confirm clinical benefit in patients, our study shows how this nanotherapy functions biologically, and how this novel concept could potentially also work in the clinical setting to solve a critical problem. This nanotherapy would be the first of its kind.”

The optimum use for HDL-statin nanotherapy would be by injection following treatment of an arterial clot. The HDL nanoparticle would deliver the statin directly to macrophages that are driving the inflammatory response. “This could potentially and very rapidly stabilize a dangerous situation,” said Dr. Mulder. “In addition, after discharge, patients would continue to use their oral statins to control LDL in their blood.”

Related Links:

Mount Sinai School of Medicine



Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.