Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

05 Mar 2017 - 09 Mar 2017
20 Mar 2017 - 23 Mar 2017
12 Apr 2017 - 14 Apr 2017

Modifying Adhesion Protein Interactions Prevents Metastasis in Mouse Models

By BiotechDaily International staff writers
Posted on 04 Feb 2014
Image: Normal breast tissue and invasive ductal carcinoma stained brown with antibodies to activated FAK. Blood vessels are indicated by BV (Photo courtesy of Dr. David Schlaepfer, University of California, San Diego).
Image: Normal breast tissue and invasive ductal carcinoma stained brown with antibodies to activated FAK. Blood vessels are indicated by BV (Photo courtesy of Dr. David Schlaepfer, University of California, San Diego).
ADVERTISEMENT
SARTORIUS AG
Cancer investigators have identified a protein critically linked to the process of metastasis by which cancer cells break away from the primary tumor and spread to other parts of the body.

Investigators at the University of California, San Diego (USA) worked with several different mouse cancer models, which they manipulated by pharmacological or genetic means. Of particular interest was the role of the protein focal adhesion kinase (FAK). FAK is a 125-kD protein that is known to participate in focal adhesion dynamics between cells with a role in motility and cell survival. FAK is a highly conserved, nonreceptor tyrosine kinase originally identified as a substrate for the oncogene protein, tyrosine kinase v-src. This cytosolic kinase has been implicated in diverse cellular roles including cell locomotion, mitogen response, and cell survival. FAK is typically located at structures known as focal adhesions, which are multiprotein structures that link the extracellular matrix (ECM) to the cytoplasmic cytoskeleton.

Results published in the January 20, 2014, online edition of the Journal of Cell Biology revealed that FAK was active in both tumors and surrounding endothelial cells and that selective FAK inhibition within endothelial cells prevented spontaneous tumor metastasis without alterations in tumor size. In a mouse melanoma model, FAK inhibition in endothelial cells prevented skin tumors from metastasizing to the lungs without affecting primary tumor growth.

The investigators found that at the molecular level tyrosine 658 of the protein vascular endothelial cadherin was a target of FAK in tumor-associated endothelial cells. Cadherins are members of a family of calcium-dependent cell adhesion proteins that preferentially interact in a homophilic manner in cell-cell interactions. They are type I membrane proteins that contribute to the sorting of heterogeneous cell types. Typically, cadherins have five similar extracellular domains, the outermost three of which have Ca2+-binding sites, and an intracellular C-terminal domain that interacts with the actin cytoskeleton.

Cadherin normally helps to maintain an endothelial cell barrier that surrounds the tumor and prevents metastasis. However, when modified by FAK, the cadherin complexes became degraded and blood vessels became porous. Inactivating FAK within endothelial cells prevented this permeability and blocked the ability of tumor cells to pass through endothelial cell barriers.

“Our studies show that pharmacological or genetic inhibition of the endothelial protein focal adhesion kinase, or FAK, prevents tumor spread by enhancing the vessel barrier function,” said senior author Dr. David D. Schlaepfer, professor of reproductive medicine at the University of California, San Diego. “Metastasis is responsible for 90% of cancer-related deaths. This fact alone underscores the need for a better mechanistic understanding of the metastatic process.”

Related Links:

University of California, San Diego



Channels

Drug Discovery

view channel
Image: The experimental drug NGI-1 slows cancer growth by blocking glycosylation of the epidermal growth factor receptor (EGFR), which is shown in the above diagram (Photo courtesy of Wikimedia Commons).

Experimental Drug Slows Lung Cancer Growth by Blocking Protein Glycosylation

An interesting new experimental anti-cancer drug slows growth of certain lung tumor cells by preventing the glycosylation of critical cell surface receptor proteins. Asparagine (N)-linked glycosylation... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.