Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Blocking a Cell Cycle Inhibitor Stimulates Replication of Insulin-Producing Beta Cells

By BiotechDaily International staff writers
Posted on 27 Jan 2014
Print article
Image: Replicating human beta cells. In cells where p57 was successfully inhibited, beta cells could undergo DNA replication. Pink: nucleus that has undergone DNA replication. Green: Insulin. Blue: Nuclei counterstained for DNA. White: p57 (Photo courtesy of Dr. Klaus Kaestner, University of Pennsylvania).
Image: Replicating human beta cells. In cells where p57 was successfully inhibited, beta cells could undergo DNA replication. Pink: nucleus that has undergone DNA replication. Green: Insulin. Blue: Nuclei counterstained for DNA. White: p57 (Photo courtesy of Dr. Klaus Kaestner, University of Pennsylvania).
Diabetes researchers have found that they could stimulate replication of mature pancreatic beta cells by blocking the activity of the cell cycle inhibitor protein p57Kip2.

The CDKN1C gene encodes the protein p57Kip2, which is a potent tight-binding inhibitor of several G1 cyclin/CDK complexes (cyclin E-CDK2, cyclin D2-CDK4, and cyclin A-CDK2) and, to lesser extent, of the mitotic cyclin B-CDC2. It is a negative regulator of cell proliferation and may play a role in the maintenance of the nonproliferative state throughout life. It is expressed in the heart, brain, lung, skeletal muscle, kidney, pancreas, and testis.

Investigators at the University of Pennsylvania (Philadelphia, USA) and their colleagues at the Hebrew University of Jerusalem (Israel) used short hairpin RNA (shRNA) to suppress the CDKN1C gene in human beta cells obtained from deceased adult donors.

They reported in the January 16, 2014, online edition of the Journal of Clinical Investigation that when human pancreatic tissue with inhibited p57Kip2 activity was transplanted into hyperglycemic, immunodeficient mice, beta cell replication increased more than three-fold. The newly replicated cells retained properties of mature beta cells, including the expression of beta cell markers such as insulin, PDX1, and NKX6.1. Furthermore, these newly replicated cells demonstrated normal glucose-induced calcium influx, further indicating beta cell functionality.

These results showed that beta cells from older humans, in which baseline replication is negligible, could be coaxed to reenter and complete the cell cycle while maintaining mature beta cell properties. Controlled manipulation of this pathway holds promise for the expansion of beta cells in patients with type II diabetes.

Related Links:

University of Pennsylvania
Hebrew University of Jerusalem



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.