Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Luteolin Nanocapsules Demonstrate Effective Anticancer Activity in Mouse Model

By BiotechDaily International staff writers
Posted on 23 Jan 2014
Image: Cellular uptake of nanoparticles encapsulating both dye and luteolin (Photo courtesy of Winship Cancer Institute of Emory University).
Image: Cellular uptake of nanoparticles encapsulating both dye and luteolin (Photo courtesy of Winship Cancer Institute of Emory University).
Nanocapsules containing the natural antioxidant luteolin were found to be significantly more effective than natural luteolin in inhibiting growth of cancer cells both in culture and in a mouse xenograft model.

Luteolin is a flavone, a type of flavonoid, and, like all flavonoids, has a yellow crystalline appearance. Dietary sources include celery, green pepper, thyme, dandelion, chamomile tea, carrots, olive oil, peppermint, rosemary, navel oranges, and oregano. Luteolin reportedly acts as a monoamine transporter activator, and is one of the few chemicals demonstrated to possess this property. Experiments have suggested that luteolin may inhibit the development of some types of skin cancer.

In the current study, investigators at Emory University (Atlanta, GA, USA) formulated water-soluble polymer-encapsulated Nano-Luteolin from luteolin, and studied its anticancer activity against lung cancer and head and neck cancer. The low water solubility of luteolin, which hampers its use in treatment due to problems of low bioavailability, poor systemic delivery, and low efficacy, led the investigators to choose a nanocapsule format for their experiments.

Results published in the January 2014 issue of the journal Cancer Prevention Research revealed that like luteolin, Nano-Luteolin inhibited the growth of lung cancer cells (H292 cell line) and squamous cell carcinoma of head and neck (SCCHN) cells (Tu212 cell line). In vivo studies using a tumor xenograft mouse model demonstrated that Nano-Luteolin had a significant inhibitory effect on the tumor growth of SCCHN in comparison to luteolin.

"Our results suggest that nanoparticle delivery of naturally occurring dietary agents like luteolin has many advantages," said senior author Dr. Dong Moon Shin, professor of hematology and medical oncology at Emory University. "By using a high concentration of luteolin in the blood, we were better able to inhibit the growth of cancer cells."

Related Links:

Emory University


Channels

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.