Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Luteolin Nanocapsules Demonstrate Effective Anticancer Activity in Mouse Model

By BiotechDaily International staff writers
Posted on 23 Jan 2014
Print article
Image: Cellular uptake of nanoparticles encapsulating both dye and luteolin (Photo courtesy of Winship Cancer Institute of Emory University).
Image: Cellular uptake of nanoparticles encapsulating both dye and luteolin (Photo courtesy of Winship Cancer Institute of Emory University).
Nanocapsules containing the natural antioxidant luteolin were found to be significantly more effective than natural luteolin in inhibiting growth of cancer cells both in culture and in a mouse xenograft model.

Luteolin is a flavone, a type of flavonoid, and, like all flavonoids, has a yellow crystalline appearance. Dietary sources include celery, green pepper, thyme, dandelion, chamomile tea, carrots, olive oil, peppermint, rosemary, navel oranges, and oregano. Luteolin reportedly acts as a monoamine transporter activator, and is one of the few chemicals demonstrated to possess this property. Experiments have suggested that luteolin may inhibit the development of some types of skin cancer.

In the current study, investigators at Emory University (Atlanta, GA, USA) formulated water-soluble polymer-encapsulated Nano-Luteolin from luteolin, and studied its anticancer activity against lung cancer and head and neck cancer. The low water solubility of luteolin, which hampers its use in treatment due to problems of low bioavailability, poor systemic delivery, and low efficacy, led the investigators to choose a nanocapsule format for their experiments.

Results published in the January 2014 issue of the journal Cancer Prevention Research revealed that like luteolin, Nano-Luteolin inhibited the growth of lung cancer cells (H292 cell line) and squamous cell carcinoma of head and neck (SCCHN) cells (Tu212 cell line). In vivo studies using a tumor xenograft mouse model demonstrated that Nano-Luteolin had a significant inhibitory effect on the tumor growth of SCCHN in comparison to luteolin.

"Our results suggest that nanoparticle delivery of naturally occurring dietary agents like luteolin has many advantages," said senior author Dr. Dong Moon Shin, professor of hematology and medical oncology at Emory University. "By using a high concentration of luteolin in the blood, we were better able to inhibit the growth of cancer cells."

Related Links:

Emory University


Print article

Channels

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A 3D nanofiber net formed by the supergelators to trap oil molecules (Photo courtesy of IBN at A*STAR / Institute of Bioengineering and Nanotechnology).

Effective Cleanup with Smart Material That Forms Oil-Trapping Net

Researchers have developed supergelators – an organic oil-scavenging material that rapidly forms a 3D net to trap oil molecules, gelatinizing into solidified masses that can be more easily removed from... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.