Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Gene Fusions Make Some Pan-Negative Melanomas Sensitive to MEK Inhibitors

By BiotechDaily International staff writers
Posted on 16 Jan 2014
Image: Scanning electron micrograph of a melanoma cell. BRAF fusion genes in pan-negative melanomas may render them sensitive to MEK inhibitors (Photo courtesy of Vanderbilt University).
Image: Scanning electron micrograph of a melanoma cell. BRAF fusion genes in pan-negative melanomas may render them sensitive to MEK inhibitors (Photo courtesy of Vanderbilt University).
Cancer researchers have identified a class of fusion genes that drive melanoma metastasis in the 35% of these skin cancers that lack the previously known driver mutations.

According to senior author Dr. Jeffrey A. Sosman, professor of medicine at Vanderbilt University (Nashville, TN, USA) "About 35% of melanomas are, as of today, considered "pan-negative,” which means they are devoid of any previously known driver mutations in the genes BRAF, NRAS, KIT, GNAQ, and GNA11."

Dr. Sosman and his colleagues used a targeted next-generation sequencing (NGS) assay (FoundationOne) and targeted RNA sequencing to search for potential drug targets in a series of pan-negative melanoma specimens.

FoundationOne, the first clinical product from the biotech company Foundation Medicine (Cambridge, MA, USA), is the first commercially available targeted sequencing assay utilizing clinical grade next-generation sequencing (NGS) in routine cancer specimens. This test identifies all classes of genomic alterations (including copy number alterations, insertions, deletions, and rearrangements) in hundreds of cancer-related genes. It complements traditional cancer treatment-decision tools and often expands treatment options by matching each patient with targeted therapies that are relevant to the molecular changes in their tumor.

The investigators reported in the December 15, 2013, issue of the journal Clinical Cancer Research that they had found fusions between the bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 gene (PAPSS1) and the V-raf murine sarcoma viral oncogene homolog B1 gene (BRAF) and between the BRAF gene and the tripartite motif-containing 24 gene (TRIM24).

Both classes of BRAF fusions activated the MAPK signaling pathway. The investigators treated fusion gene-bearing cells either with the BRAF inhibitor vemurafenib or with trametinib, an inhibitor of MEK, a protein in the MAPK signaling pathway. Results showed that signaling induced by the BRAF fusions was not responsive to vemurafenib but could be inhibited by trametinib, which implied that the fusions could make melanoma cells harboring them sensitive to MEK inhibitors.

"Performing a sophisticated analysis called targeted next-generation sequencing, it appears that about 8% of pan-negative melanomas have BRAF fusions," said Dr. Sosman. "Our results are important because they obviously suggest that there probably are other, as yet unidentified, molecular changes that make these melanomas susceptible to drugs that are available right now."

This study was funded in part by "Stand up to Cancer" (Pasadena, CA, USA), an organization that raises funds to accelerate the pace of cancer research in order to get new therapies to patients quickly and save lives now.

Related Links:
Vanderbilt University
Foundation Medicine
Stand up to Cancer


comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.