Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Deadly Drug-Resistant Strain of Escherichia coli Emerged as a Single Genetic Clone

By BiotechDaily International staff writers
Posted on 02 Jan 2014
Image: Colonies of Escherichia coli growing in a laboratory culture (Photo courtesy of the CDC - Centers for Disease Control and Prevention).
Image: Colonies of Escherichia coli growing in a laboratory culture (Photo courtesy of the CDC - Centers for Disease Control and Prevention).
Molecular microbiologists working with advanced genomic research tools have shown that an extremely virulent and drug-resistant strain of Escherichia coli appeared about 10 years ago following mutations in two genes.

Previous studies on the H30-Rx clone of the ST131 strain of E. coli using pulsed-field gel electrophoresis (PFGE) had indicated that characteristics such as propensity for extraintestinal infections, fluoroquinolone resistance, and extended-spectrum beta-lactamase (ESBL) production had arisen as a series of independent genetic events. If this conclusion were correct, it would suggest that the existence of many different intermediate strains would exist with multiple pathways for evading the immune system and medical treatment.

However, in a new study published in the December 17, 2013, edition of the journal mBio, investigators at George Washington University School of Public Health (Washington DC, USA) and their colleagues at the University of Minnesota (Minneapolis, USA) used the advanced genomic technique, whole-genome sequencing, to reconstruct the evolutionary history of the ST131 clone. The investigators analyzed the genomes of samples of E. coli collected from patients and animals in five countries over the 44-year period, 1967–2011.

They found that fluoroquinolone resistance was confined almost entirely to a single, rapidly expanding ST131 subclone, designated H30-R. This clone, which was fully resistant to the drug ciprofloxacin, soon morphed into a new clone called H30-Rx, which was resistant to several extended-spectrum antibiotics, such as third-generation cephalosporins.

The investigators believe that the clonal nature of H30-Rx may provide opportunities for vaccine or transmission prevention-based control strategies, which could gain importance as H30-Rx and other extraintestinal pathogenic E. coli subclones become resistant to an increasing number of antibiotics.

"This strain of E. coli spreads from person to person and seems to be particularly virulent," said contributing author Dr. James R. Johnson, professor of medicine at the University of Minnesota. "This study might help us develop better tools to identify, stop or prevent its spread by finding better ways to block the transmission of the superbug, or by finding a diagnostic test that would help doctors identify such an infection early on, before it might have the chance to turn lethal."

Related Links:

George Washington University School of Public Health
University of Minnesota



Channels

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.