Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Breast Cancer Metastasis Depends on Expression of Leader Cell Protein

By BiotechDaily International staff writers
Posted on 24 Dec 2013
Image: A breast tumor (blue) uses leader cells (green) to invade muscle tissue (red) in a mouse (Photo courtesy of Dr. Kevin Cheung, Cell).
Image: A breast tumor (blue) uses leader cells (green) to invade muscle tissue (red) in a mouse (Photo courtesy of Dr. Kevin Cheung, Cell).
Cell biologists have identified a protein that they regard as a potential drug target in a unique class of breast cancer cells that lead the process of metastasis into surrounding tissues.

Carcinomas typically migrate into normal tissues as a cohesive multicellular unit, a process termed collective invasion. It has been unclear how different subpopulations of cancer cells contributed to this process.

Investigators at Johns Hopkins University (Baltimore, MD, USA) developed three-dimensional organoid assays to identify the most invasive cancer cells in primary breast tumors. They reported in the December 12, 2013, online edition of the journal Cell that collective invasion was led by specialized cancer cells (leader cells) that were defined by their expression of basal epithelial genes, such as cytokeratin-14 (K14) and p63. Furthermore, examination of human tumor samples showed that K14-expressing cells led collective invasion in the major human breast cancer subtypes.

To confirm the role of K14 in the invasive process, the investigators used gene therapy techniques to block its expression in some tumor lines. Cancer cells with blocked K14 expression and similar but untreated cancer cells were then implanted into different sites on the same mouse. Examination of the resulting tumors showed that leader cells were present in the K14-expressing tumors and were leading vigorous invasions into normal tissue. In the tumors with blocked K14 expression essentially no invasions occurred.

"Metastasis is what most threatens breast cancer patients, and we have found a way to stop the first part of the process in mice," said senior author Dr. Andrew Ewald, assistant professor of cell biology at Johns Hopkins University. "We are still several years away from being able to use these insights to help patients with breast cancer, but we now know which tumor cells are the most dangerous, and we know some of the proteins they rely on to do their dirty work. Just a few leader cells are sufficient to start the process of metastasis, and they require K14 to lead the invasion."

Related Links:

Johns Hopkins University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.