Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Breast Cancer Metastasis Depends on Expression of Leader Cell Protein

By BiotechDaily International staff writers
Posted on 24 Dec 2013
Image: A breast tumor (blue) uses leader cells (green) to invade muscle tissue (red) in a mouse (Photo courtesy of Dr. Kevin Cheung, Cell).
Image: A breast tumor (blue) uses leader cells (green) to invade muscle tissue (red) in a mouse (Photo courtesy of Dr. Kevin Cheung, Cell).
Cell biologists have identified a protein that they regard as a potential drug target in a unique class of breast cancer cells that lead the process of metastasis into surrounding tissues.

Carcinomas typically migrate into normal tissues as a cohesive multicellular unit, a process termed collective invasion. It has been unclear how different subpopulations of cancer cells contributed to this process.

Investigators at Johns Hopkins University (Baltimore, MD, USA) developed three-dimensional organoid assays to identify the most invasive cancer cells in primary breast tumors. They reported in the December 12, 2013, online edition of the journal Cell that collective invasion was led by specialized cancer cells (leader cells) that were defined by their expression of basal epithelial genes, such as cytokeratin-14 (K14) and p63. Furthermore, examination of human tumor samples showed that K14-expressing cells led collective invasion in the major human breast cancer subtypes.

To confirm the role of K14 in the invasive process, the investigators used gene therapy techniques to block its expression in some tumor lines. Cancer cells with blocked K14 expression and similar but untreated cancer cells were then implanted into different sites on the same mouse. Examination of the resulting tumors showed that leader cells were present in the K14-expressing tumors and were leading vigorous invasions into normal tissue. In the tumors with blocked K14 expression essentially no invasions occurred.

"Metastasis is what most threatens breast cancer patients, and we have found a way to stop the first part of the process in mice," said senior author Dr. Andrew Ewald, assistant professor of cell biology at Johns Hopkins University. "We are still several years away from being able to use these insights to help patients with breast cancer, but we now know which tumor cells are the most dangerous, and we know some of the proteins they rely on to do their dirty work. Just a few leader cells are sufficient to start the process of metastasis, and they require K14 to lead the invasion."

Related Links:

Johns Hopkins University



Channels

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.