We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Genetic Barcode Helping Make Sense of Deluge of Genetic Data

By LabMedica International staff writers
Posted on 23 Dec 2013
Print article
An enhanced internet research application is helping clinicians and cancer researchers make sense out of a flood of genetic data from close to 100,000 patients and more than 50,000 lab mice.

The tool, called the Gene Expression Barcode 3.0, is will be a key resource in the new age of personalized medicine, in which cancer therapies are customized to the genetic composition of an individual patient’s tumor.

Significant new improvements in the Gene Expression Barcode 3.0 were reported in the January 2014 issue of the journal Nucleic Acids Research, published online December 2013 ahead of print. The senior author Dr. Michael J. Zilliox is from the Loyola University Chicago Stritch School of Medicine (IL, USA) and the co-inventor of the Gene Expression Barcode.

“The tool has two main advantages,” Dr. Zilliox said. “It’s fast and it’s free.” The Gene Expression Barcode is available online (please see Related Links below), and designed and hosted by Loyola University Chicago Stritch School of Medicine. The website is receiving 1,600 unique visitors monthly.

Determining how a patient’s cancer genes are expressed can help a clinician put together a pursonlized treatment. In a tumor cell, for example, certain genes are expressed while other genes are unexpressed. Moreover, different kinds of cancer cells have different patterns of gene expression. Genes are expressed through RNA, a nucleic acid that performs as a messenger to carry out instructions from DNA for making proteins.

Research institutions have made public genetic data from nearly 100,000 patients, most of whom had cancer, and more than 50,000 laboratory mice. However, in raw form, these data are too cumbersome to be of much practical use for most researchers. The Gene Expression Barcode employs sophisticated statistical methods to make this huge amount of data much more user-friendly to researchers.

The barcode algorithm is designed to estimate the genes that are expressed and those unexpressed.  The Gene Expression Barcode is binary coded: the expressed genes are ones and the unexpressed genes are zeroes.

Dr. Zilliox co-invented the Gene Expression Barcode, with Rafael Irizarry, Ph.D. Dr. Zilliox and Irizarry first reported the Gene Expression Barcode in 2007. In 2011, they reported an improved 2.0 version. The Barcode already has been cited in more than 120 scientific articles, and the new 3.0 version will make it even easier and faster for researchers to use, according to Dr. Zilliox.

Related Links:

Gene Expression Barcode
Loyola University Chicago Stritch School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.