Features | Partner Sites | Information | LinkXpress
Sign In

Thrombin Levels Linked to Multiple Sclerosis Progression

By BiotechDaily International staff writers
Posted on 18 Dec 2013
Image: Using advanced detection and imaging techniques, Gladstone Institutes researchers were able to track thrombin activity in mice modified to mimic MS (three samples on the left) compared to healthy controls (Photo courtesy of the University of California, San Francisco).
Image: Using advanced detection and imaging techniques, Gladstone Institutes researchers were able to track thrombin activity in mice modified to mimic MS (three samples on the left) compared to healthy controls (Photo courtesy of the University of California, San Francisco).
Results obtained from experiments that tested a novel molecular probe directed at thrombin suggested that measurement of thrombin activity might be exploited for developing sensitive probes for preclinical detection and monitoring of inflammation and progression of multiple sclerosis (MS).

MS, which affects more than 200 million people worldwide, is an inflammatory disease in which the myelin sheaths around the axons of the brain and spinal cord are damaged by autoimmune attack, leading to demyelination and scarring as well as a broad spectrum of signs and symptoms.

Thrombin is the central protease of the blood-clotting cascade, and beyond its key role in the dynamic process of thrombus formation, thrombin has a pronounced proinflammatory character. Investigators at the Gladstone Institutes of the University of California, San Francisco (USA) had shown previously that blood seeping into the brain due to MS-induced weakening of the blood brain barrier caused a buildup of fibrin in the brain. Fibrin is produced from fibrinogen due to the action of thrombin.

In the current study, the investigators used a mouse MS model (experimental autoimmune encephalomyelitis) to characterize the activity pattern of thrombin over the course of the disease. To determine the level of thrombin, the investigators developed a thrombin-specific "Activatable Cell-Penetrating Peptide" (ACPP), a novel type of molecular probe that delivered a fluorescent agent to regions of the mouse nervous system where thrombin was active.

Results published in the November 29, 2013, online edition of the journal Annals of Neurology revealed that thrombin activity preceded onset of neurological signs, increased at disease peak, correlated with fibrin deposition, microglial activation, demyelination, axonal damage, and clinical severity. Mice with a genetic deficit in prothrombin (the precursor of thrombin) confirmed the specificity of the thrombin probe.

"We already knew that the buildup of fibrin appears early in the development of MS - both in animal models and in human patients, so we wondered whether thrombin activity could in turn serve as an early marker of disease," said senior author Dr. Katerina Akassoglou, professor of neurology at the University of California, San Francisco. "In fact, we were able to detect thrombin activity even in our animal models, before they exhibited any of the disease's neurological signs."

"In the future," said Dr. Akassoglou, "this thrombin-specific ACPP could be developed to one day allow for early patient diagnosis and therapeutic intervention - including a way to effectively monitor how patients are responding to the latest treatments."

Related Links:

Gladstone Institutes

comments powered by Disqus


Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more


view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel

Important Immune Cell Regulators’ Response Identified

A new strategy could help accelerate laboratory research and the development of potential therapeutics, including vaccines. The technology may also be used to identify the genes that underlie tumor cell development. There are approximately 40,000 genes in each of the body’s cells, but functions for only approximately... Read more


view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
Copyright © 2000-2014 Globetech Media. All rights reserved.