Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Thrombin Levels Linked to Multiple Sclerosis Progression

By BiotechDaily International staff writers
Posted on 18 Dec 2013
Image: Using advanced detection and imaging techniques, Gladstone Institutes researchers were able to track thrombin activity in mice modified to mimic MS (three samples on the left) compared to healthy controls (Photo courtesy of the University of California, San Francisco).
Image: Using advanced detection and imaging techniques, Gladstone Institutes researchers were able to track thrombin activity in mice modified to mimic MS (three samples on the left) compared to healthy controls (Photo courtesy of the University of California, San Francisco).
Results obtained from experiments that tested a novel molecular probe directed at thrombin suggested that measurement of thrombin activity might be exploited for developing sensitive probes for preclinical detection and monitoring of inflammation and progression of multiple sclerosis (MS).

MS, which affects more than 200 million people worldwide, is an inflammatory disease in which the myelin sheaths around the axons of the brain and spinal cord are damaged by autoimmune attack, leading to demyelination and scarring as well as a broad spectrum of signs and symptoms.

Thrombin is the central protease of the blood-clotting cascade, and beyond its key role in the dynamic process of thrombus formation, thrombin has a pronounced proinflammatory character. Investigators at the Gladstone Institutes of the University of California, San Francisco (USA) had shown previously that blood seeping into the brain due to MS-induced weakening of the blood brain barrier caused a buildup of fibrin in the brain. Fibrin is produced from fibrinogen due to the action of thrombin.

In the current study, the investigators used a mouse MS model (experimental autoimmune encephalomyelitis) to characterize the activity pattern of thrombin over the course of the disease. To determine the level of thrombin, the investigators developed a thrombin-specific "Activatable Cell-Penetrating Peptide" (ACPP), a novel type of molecular probe that delivered a fluorescent agent to regions of the mouse nervous system where thrombin was active.

Results published in the November 29, 2013, online edition of the journal Annals of Neurology revealed that thrombin activity preceded onset of neurological signs, increased at disease peak, correlated with fibrin deposition, microglial activation, demyelination, axonal damage, and clinical severity. Mice with a genetic deficit in prothrombin (the precursor of thrombin) confirmed the specificity of the thrombin probe.

"We already knew that the buildup of fibrin appears early in the development of MS - both in animal models and in human patients, so we wondered whether thrombin activity could in turn serve as an early marker of disease," said senior author Dr. Katerina Akassoglou, professor of neurology at the University of California, San Francisco. "In fact, we were able to detect thrombin activity even in our animal models, before they exhibited any of the disease's neurological signs."

"In the future," said Dr. Akassoglou, "this thrombin-specific ACPP could be developed to one day allow for early patient diagnosis and therapeutic intervention - including a way to effectively monitor how patients are responding to the latest treatments."

Related Links:

Gladstone Institutes



Channels

Drug Discovery

view channel
Image: Cancer cells were treated with a control (left) and the overstimulating compound MCB-613 (right) (Photo courtesy of Dr. Lei Wang, Baylor University College of Medicine).

Drug Candidate Propels Cancer Cells into Fatal Overdrive

A candidate drug that destroys cancer cells by stimulating them to produce more proteins than the cells can actually process was shown to kill a wide variety of cancer cells in culture and to inhibit tumor... Read more

Lab Technologies

view channel
Image: The Synergy Neo2 Multi-Mode Reader recently received Cisbio HTRF certification (Photo courtesy of BioTek Instruments Inc.).

High-Speed Multimode Microplate Reader Receives Homogenous Time-Resolved Fluorescence Certification

A new high-performance, high-speed microplate reader has received HTRF (homogenous time-resolved fluorescence) accreditation that certifies that it complies with standards for detection set by a major... Read more

Business

view channel

Innovative Microbial Diagnostics Developer Acquired by Biomedical Giant

A biotech company noted for its development of innovative products in the field of molecular microbiology diagnostics has been acquired by one of the world's largest biomedical corporations. GeneWEAVE BioSciences, Inc.(Los Gatos, CA, USA) and Roche (Basel, Switzerland) have announced that Roche will be purchasing the... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.