Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
GLOBETECH PUBLISHING
JIB

Human Stem Cells Used to Generate Functional Kidney-Like Structures

By BiotechDaily International staff writers
Posted on 04 Dec 2013
Image: Salk Institute scientists have grown human stem cells into early-stage ureteric buds. They used mouse embryonic kidney cells (seen here in red) to coax the human stem cells to grow into the nascent mushroom-shaped buds (blue and green) (Photo courtesy of the Salk Institute for Biological Studies).
Image: Salk Institute scientists have grown human stem cells into early-stage ureteric buds. They used mouse embryonic kidney cells (seen here in red) to coax the human stem cells to grow into the nascent mushroom-shaped buds (blue and green) (Photo courtesy of the Salk Institute for Biological Studies).
A paper described the successful differentiation of human stem cells into functioning kidney-like structures.

The high incidence of kidney disease and the poor prognosis support the urgent need for the development of new therapeutic strategies.

Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) described progress in the use of induced pluripotent stem cells (iPSCs) for kidney disease research in the November 17, 2013, online edition of the journal Nature Cell Biology.

They generated iPSCs from skin cells and then grew them in cultures laced with growth factors known to be linked to kidney development. The generated cells demonstrated rapid and specific expression of renal progenitor markers after four days of exposure to defined media conditions. Further maturation into ureteric bud structures was accomplished by employing a three-dimensional culture system in which the differentiated human cells assembled and integrated alongside mouse cells for the formation of chimeric ureteric buds. The ureteric bud is a protrusion from the mesonephric duct that appears during the development of the urinary and reproductive organs and eventually develops into the adult kidney.

“Attempts to differentiate human stem cells into renal cells have had limited success,” said senior author Dr. Juan Carlos Izpisua Belmonte, professor in the gene expression laboratory at the Salk Institute for Biological Studies. “We have developed a simple and efficient method that allows for the differentiation of human stem cells into well-organized three-D structures of the ureteric bud (UB), which later develops into the collecting duct system. Our results provide a new platform for the study of kidney diseases and lineage commitment, and open new avenues for the future application of regenerative strategies in the clinic.”

Related Links:

Salk Institute for Biological Studies



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: Neurons (greenish yellow) attach to silk-based scaffold (blue) creating functional networks throughout the scaffold pores (dark areas) (Photo courtesy of Tufts University).

Functional 3D Brain-Like Tissue Model Bioengineered

Researchers recently reported on the development of the first complex, three-dimensional (3D) model comprised of brain-like cortical tissue that displays biochemical and electrophysiologic responses, and... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.