Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Bacteriophage Protein Shows Antibiotic Potential

By BiotechDaily International staff writers
Posted on 27 Nov 2013
Image: Electron micrograph of bacteriophages attached to a bacterial cell (Photo courtesy of Wikimedia Commons).
Image: Electron micrograph of bacteriophages attached to a bacterial cell (Photo courtesy of Wikimedia Commons).
The T7 bacteriophage produces a protein that blocks Escherichia coli cell division and has the potential of being developed into an antibiotic-replacing drug.

T7 produces over 100 progeny per host cell in less than 25 minutes. If the T7 phage infection completes a successful growth cycle, it invariably culminates in disintegration of the host cell. Bacteriophages take over host cell resources primarily via the activity of proteins expressed early in infection. One such protein produced by the T7 phage is called Gp0.4 (gene product 0.4).

Investigators at Tel Aviv University (Israel) and their colleagues at Duke University (Durham, NC, USA) reported in the November 11, 2013, online edition of the journal, Proceedings of the National Academy of Sciences of the United States of America (PNAS) that Gp0.4 was a direct inhibitor of the E. coli filamenting temperature-sensitive mutant Z division protein.

They showed that a chemically synthesized Gp0.4 bound to purified filamenting temperature-sensitive mutant Z protein and directly inhibited its assembly in vitro. Consequently, expression of Gp0.4 in vivo was lethal to E. coli cultures and resulted in bacteria that were morphologically elongated. Furthermore, the inhibition of cell division by Gp0.4 enhanced the bacteriophage’s competitive ability by enabling them to maximize their progeny number by inhibiting escape of the daughter cells of the infected bacteria.

“Bacteria are infested with bacteriophages, which are their natural enemies and which in most cases destroy them,” said senior author Dr. Udi Qimron, professor of clinical microbiology and immunology at Tel Aviv University. “Ever since the discovery of bacteriophages in the early 20th century, scientists have understood that, on the principle of the "enemy of your enemy is your friend"; medical use could be made of phages to fight bacteria.”

“GP0.4 impedes cell division in the E. coli cell. With its capacity for cell division blocked, the bacterium continues to elongate until it dies,” said Dr. Qimron. “Potentially, this protein could be the ideal antibiotic.”

Related Links:

Tel Aviv University
Duke University



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.