Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Small Molecule TWEAK-Fn14 Inhibitors Block Cancer Growth

By BiotechDaily International staff writers
Posted on 21 Nov 2013
Image: Immunohistochemistry of TWEAK in human brain tissue (Photo courtesy of Sigma-Aldrich Inc.).
Image: Immunohistochemistry of TWEAK in human brain tissue (Photo courtesy of Sigma-Aldrich Inc.).
Drug developers have identified a series of small molecules that block the interaction of the cytokine TWEAK (TNF-related weak inducer of apoptosis) with its receptor Fn14 (fibroblast growth factor-inducible 14), which slows growth of brain, breast, pancreatic, esophageal, lung, and liver cancers.

TWEAK is a cytokine protein that belongs to the tumor necrosis factor (TNF) family and is a ligand for the Fn14/TWEAKR receptor. This cytokine has overlapping signaling functions with TNF, but displays a much wider tissue distribution. TWEAK can induce apoptosis via multiple pathways of cell death in a cell type-specific manner. This cytokine is also found to promote proliferation and migration of endothelial cells, and thus acts as a regulator of angiogenesis. Overexpression of TWEAK-Fn14 activation has been linked to tissue damage and degradation, including autoimmune diseases, as well as the survival, migration, and invasion of cancer cells.

Investigators at the Translational Genomics Research Institute (Phoenix, AZ, USA) used computer-generated protein-protein docking models to design a targeted library of small molecules predicted to disrupt the TWEAK-Fn14 interaction.

Results published in the November 8, 2013, issue of the Journal of Biological Chemistry described a group of 129 small molecules that produced up to 37% inhibition of TWEAK-Fn14 binding. Four molecules were found to be particularly potent; including compound L524-0366, which completely suppressed TWEAK-induced brain cancer-cell migration without any potential cytotoxic effects.

"Our results show that the TWEAK-Fn14 interaction is a viable drug target, and they provide the foundation for further exploration of this system in researching invasive cancers," said co-senior author Dr. Nhan Tran, associate professor of cancer and cell biology at the Translational Genomics Research Institute. "Because of its unique qualities and association with acute injuries, this drug-like molecule not only could benefit cancer patients, but also might be applied to patients with autoimmunity, heart disease like atherosclerosis, and rheumatoid arthritis."

Related Links:

Translational Genomics Research Institute



RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Genomics/Proteomics

view channel

MicroRNA Panel Identifies Mild Brain Trauma in a Mouse Model

A study conducted on a mouse model found that a panel of 13 serum microRNAs (miRNAs) could be used to identify the severity of damage to the brain and the risk of developing adverse effects following mild traumatic brain injury (mTBI). MTBI is a heterogeneous injury that may lead to the development of neurological and... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: Mouse kidneys, liver, and pancreas imaged after treatment with a variety of protocols: a saline solution, Scale, SeeDB (see deep brain), CUBIC, and carotid body (CB) perfusion (which was used in this study) (Photo courtesy of RIKEN Quantitative Biology Center).

Nearly Transparent Mice Offers Potential of Whole-Organism Imaging

Japanese researchers have developed a method that combines tissue decolorization and light-sheet fluorescent microscopy to take extremely detailed images of the interior of individual organs and even entire... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.