Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Pair of Molecular Regulators Maintains Normal Eosinophil Levels

By BiotechDaily International staff writers
Posted on 18 Nov 2013
Image: Microscope image (400x) of a peripheral blood smear showing an eosinophil surrounded by erythrocytes (Photo courtesy of Wikimedia Commons).
Image: Microscope image (400x) of a peripheral blood smear showing an eosinophil surrounded by erythrocytes (Photo courtesy of Wikimedia Commons).
An international team of cell biologists have identified the mechanism that regulates production of eosinophils by the blood marrow, which may lead to development of drugs to control diseases caused by an excess of these cells.

Eosinophils are immune cells responsible for combating certain infections such as multicellular parasites. Along with mast cells, they also control mechanisms associated with allergy and asthma. Eosinophils develop in the bone marrow under the control of the central eosinophil growth factor interleukin 5 (IL-5) before migrating into the blood. In normal individuals, eosinophils make up about 1%–6% of white blood cells, and are about 12–17 micrometers in size. Under normal conditions, eosinophils are found in the medulla and the junction between the cortex and medulla of the thymus and in the lower gastrointestinal tract, ovary, uterus, spleen, and lymph nodes but not in the lung, skin, or esophagus. The presence of eosinophils in these latter organs is associated with disease.

Investigators at Tel Aviv University (Israel) and Cincinnati Children's Hospital Medical Center (Ohio, USA) searched for the molecular signals that regulate eosinophil production.

They reported in the November 10, 2013, online edition of the journal Nature Immunology that IL-5 activity in eosinophils was regulated by the paired immunoglobulin-like receptors PIR-A and PIR-B. PIR-A countered the activity of IL-5 and triggered eosinophil apoptosis. However, in eosinophilia the activity of PIR-A was blocked by overexpression of PIR-B, and the eosinophils did not die.

Experiments using a model system of asthmatic mice that lacked PIR-B showed that these animals had little expansion of eosinophils in their blood and lungs and less asthmatic inflammation in their lungs than normal mice. The lack of PIR-B prevented eosinophils from reaching harmful levels.

"The fundamental knowledge we have gained may one day yield new therapies to treat devastating eosinophilic disorders," said senior author Dr. Ariel Munitz, senior lecturer in microbiology and clinical immunology at Tel Aviv University.

Researchers are now seeking drugs to either enhance the toxic effect of PIR-A on eosinophils or to weaken PIR-B activity in order to reduce its inhibitory effect on PIR-A.

Related Links:

Tel Aviv University
Cincinnati Children's Hospital Medical Center



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.