Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Highly Stable Peptoid Nanosheets May Replace Antibodies in Biosensors

By BiotechDaily International staff writers
Posted on 13 Nov 2013
Print article
Image: Antibody-inspired “molecular Velcro” could lead to a new class of biosensors. Researchers took cues from the architecture of a natural antibody (left) in designing a new material that resembles tiny sheets of Velcro (right) (Photo courtesy of Lawrence Berkeley National Laboratory).
Image: Antibody-inspired “molecular Velcro” could lead to a new class of biosensors. Researchers took cues from the architecture of a natural antibody (left) in designing a new material that resembles tiny sheets of Velcro (right) (Photo courtesy of Lawrence Berkeley National Laboratory).
Ultra-thin peptoid "nanosheets" constructed from synthetic, peptide-like molecules are able to bind a wide variety of analytes with high specificity and high affinity, which makes them ideal candidates for use as molecular recognition elements for chemical and biological sensors.

In peptoids, the side chain is connected to the nitrogen of the peptide backbone, instead of the alpha-carbon as in peptides. Notably, peptoids lack the amide hydrogen, which is responsible for many of the secondary structure elements in peptides and proteins. Like D-Peptides and beta-peptides peptoids are completely resistant to proteolysis, and are therefore advantageous for applications where proteolysis is a major issue. Since secondary structure in peptoids does not involve hydrogen bonding, it is not typically denatured by solvent, temperature, or chemical denaturants such as urea. As the amino portion of the amino acid results from the use of any amine, thousands of commercially available amines can be used to generate peptoids at costs far lower than would be required for similar peptides.

Investigators at the Lawrence Berkeley National Laboratory (CA, USA) described in the October 2013 issue of the journal ACS Nano the design and synthesis of a new class of functionalized peptoid nanosheets that mimicked antibody binding. The surface of these free-floating nanosheets displayed a high density of conformationally constrained peptide and peptoid loops that generated an extended, multivalent two-dimensional material that was chemically and biologically stable. The nanosheet served as a robust, high-surface area scaffold upon which to display a wide variety of functional loop sequences.

The functionalized nanosheets were characterized by atomic force microscopy, X-ray diffraction, and X-ray reflectivity measurements, and were shown to serve as substrates for enzymes (protease and casein kinase II), as well as templates for the growth of defined inorganic materials (gold metal).

"Antibodies have a really effective architectural design: a structural scaffold that pretty much stays the same, whether it is for snake venom or the common cold, and endlessly variable functional loops that bind foreign invaders," said senior author Dr. Ron Zuckermann, director of the biological nanostructures facility at the Lawrence Berkeley National Laboratory. "We have mimicked that here, with a two-dimensional nanosheet scaffold covered with little functional loops like Velcro."

"The reason that nanosheets form is because there is a code for it programmed directly into the peptoids," said Dr. Zuckermann. "In this case it is admittedly a pretty rudimentary program, but it shows how if you bring in just a little bit of sequence information: Boom! You can make a nanosheet. That is kind of, what my whole research program here is about: learning from the richness of chemical sequence information found in biology to create new types of advanced synthetic materials. We are really just starting to scratch the surface."

Related Links:

Lawrence Berkeley National Laboratory



Print article

Channels

Genomics/Proteomics

view channel
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).

Molecular Pathway Controlling High-affinity Antibody Production Identified

A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.