Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

New Diabetes Drug Fights Obesity While Controlling Glucose Metabolism

By BiotechDaily International staff writers
Posted on 11 Nov 2013
A synthetic peptide that targets receptors for the naturally occurring incretin hormones GLP-1 and GIP is being developed into a drug for the management of diseases associated with impaired glucose tolerance.

Incretins are a group of gastrointestinal hormones that cause an increase in the amount of insulin released from the beta cells of the islets of Langerhans after eating, even before blood glucose levels become elevated. They also slow the rate of absorption of nutrients into the blood stream by reducing gastric emptying and may directly reduce food intake. They also inhibit glucagon release from the alpha cells of the Islets of Langerhans.

The two main candidate molecules that fulfill criteria for an incretin are glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (also known as glucose-dependent insulinotropic polypeptide or GIP). Both GLP-1 and GIP are rapidly inactivated by the enzyme dipeptidyl peptidase-4 (DPP-4).

Investigators at Indiana University (Bloomington, USA) developed a "unimolecular dual incretin" derived from an intermixed peptide sequence from GLP-1 and GIP. They reported in the October 30, 2013, online edition of the journal Science Translational Medicine that this compound corrected two causal mechanisms of diabetes-linked obesity, i.e., adiposity-induced insulin resistance and pancreatic insulin deficiency, more effectively than did selective mono-agonists. This superior efficacy translated across rodent models of obesity and diabetes, including db/db mice and ZDF rats, to primates (cynomolgus monkeys and humans).

"The current study demonstrates clearly that combining GLP-1 and GIP can produce improved therapeutic effects," said contributing author Dr. Richard DiMarchi, professor of chemistry at Indiana University. "It achieved results comparable to those that resulted from a 10-fold higher dose of agents that target only GLP-1 receptors."

"The results demonstrate that GLP-1 and GIP, when built into a single molecule, provide synergistic activity to control glucose and lower body weight across a spectrum of animal models, including in human clinical experiments," said Dr. DiMarchi. "Currently approved drugs are quite effective, but they are insufficient in normalizing glucose, and they certainly do not cause much loss of body weight."

Clinical trials conducted by Roche (Basel, Switzerland) demonstrated a decrease in glucose levels beyond what would be expected from conventional treatment. However, the six-week trial was not of significant duration to provide definitive evidence about weight loss in humans.

Related Links:

Indiana University
Roche 



Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.