Features Partner Sites Information LinkXpress
Sign In
Demo Company

Genetic Errors Identified in 12 Major Cancer Types

By BiotechDaily International staff writers
Posted on 07 Nov 2013
Print article
Image: Immunohistochemistry of paraffin-embedded human ovary tumor using P53 antibody (Photo courtesy of Proteintech).
Image: Immunohistochemistry of paraffin-embedded human ovary tumor using P53 antibody (Photo courtesy of Proteintech).
The latest sequencing and analysis methods have been used to identify somatic variants across thousands of tumors, and 127 significantly mutated genes were detected.

Some of the same genes commonly mutated in certain cancers also occur in seemingly unrelated tumors. For example, a gene mutated in 25% of leukemia cases in the study also was found in tumors of the breast, rectum, head and neck, kidney, lung, ovary and uterus.

Scientists at the Washington University School of Medicine (St. Louis, MO, USA) performed exome sequencing on thousands of tumor samples and matched normal tissues, the latter being used as controls to distinguish somatic mutations from inherited variants. The teams analyzed the genes from 3,281 tumors, a collection of cancers of the breast, uterus, head and neck, colon and rectum, bladder, kidney, ovary, lung, brain and blood. In addition to finding common links among genes in different cancers, the scientists also identified a number of mutations exclusive to particular cancer types.

While the average number of mutated genes in tumors varied among the cancer types, most tumors had only two to six mutations in genes that drive cancer. This may be one reason why cancer is so common. Genes that have a significant effect on survival were also identified. These included tumor protein p53 (TP53), an already well-known cancer gene, occurred most commonly across the different tumor types. It was found in 42% of samples and routinely was associated with a poor prognosis, particularly in kidney cancer, head and neck cancer and acute myeloid leukemia. Another gene, Breast Cancer 1 (BRCA1) associated protein-1 (ubiquitin carboxy-terminal hydrolase) (BAP1), was also linked with an unfavorable prognosis, especially in patients with kidney and uterine cancer.

These discoveries set the stage for devising new diagnostic tools and more personalized cancer treatments. Li Ding, PhD, the senior author of the study, said, “Because we now know, for example, that genes mutated in leukemia also can be altered in breast cancer and that genetic errors in lung cancer also can show up in colon and rectal cancer, we think one inclusive diagnostic test that includes all cancer genes would be ideal. This would provide a more complete picture of what's going on in a tumor, and that information could be used to make decisions about treatment.” The study was published on October 16, 2013, in the journal Nature.

Related Links:

Washington University School of Medicine

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.