Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
PZ HTL SA

T-cells Activated More Effectively by Ellipsoidal Artificial Antigen-Presenting Cells

By BiotechDaily International staff writers
Posted on 21 Oct 2013
Image: T-cells (red) are activated more robustly when they interact with artificial antigen-presenting cells (green) that are elongated (right) versus round (left) (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).
Image: T-cells (red) are activated more robustly when they interact with artificial antigen-presenting cells (green) that are elongated (right) versus round (left) (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).
Artificial antigen-presenting cells (aAPCs) shaped like American footballs were able to activate immune system T-cells to attack and destroy cancer cells much more effectively than spherical aAPCs.

When circulating T-cells interact with APCs, they become conditioned to recognize foreign proteins, so that if the T-cells encounter those proteins again, they are able to divide rapidly to create a multitude of defensive cells that attack and destroy the cells bearing those antigens.

While both forms of aAPCs are able to express suitable levels of surface antigens, ellipsoidal particles were found to contact an appreciably greater amount of the T-cell membrane surface than did spherical particles.

Investigators at Johns Hopkins University (Baltimore, MD, USA) reported in the October 5, 2013, online edition of the journal Biomaterials that ellipsoidal biomimetic aAPCs significantly enhanced in vitro and in vivo activity above that of spherical aAPCs with similar volume and antigen content. Confocal imaging studies indicated that CD8+ T-cells preferentially migrated to and were activated by interaction with the long axis of the aAPC. Importantly, enhanced activity of ellipsoidal aAPCs was seen in a mouse melanoma model, with the football shaped particles improving survival of test mice compared to spherical aAPCs.

"The shape of the particles really seems to matter because the stretched, ellipsoidal particles we made performed much better than spherical ones in activating the immune system and reducing the animals' tumors," said senior author Dr. Jordan Green, assistant professor of biomedical engineering at Johns Hopkins University. "When immune cells in the body come in contact, they are not doing so like two billiard balls that just touch ever so slightly. Contact between two cells involves a significant overlapping surface area. We thought that if we could flatten the particles, they might mimic this interaction better than spheres and activate the T-cells more effectively. This adds an entirely new dimension to studying cellular interactions and developing new artificial APCs. Now that we know that shape matters, scientists and engineers can add this parameter to their studies."

Related Links:
Johns Hopkins University




Channels

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.