Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Super-Resolution Imaging Technology Locates Specific DNA Sequences

By BiotechDaily International staff writers
Posted on 21 Oct 2013
Image: The super-resolution technique allows fluorescent-labeled probe DNA to pinpoint target DNA sequences in an immobilized strand in ways neither regular nor electron microscopes are able. The technique relies on multiple images of probes binding temporarily to targets as they flow over the strand and are captured by a camera (Photo courtesy of the Landes Group).
Image: The super-resolution technique allows fluorescent-labeled probe DNA to pinpoint target DNA sequences in an immobilized strand in ways neither regular nor electron microscopes are able. The technique relies on multiple images of probes binding temporarily to targets as they flow over the strand and are captured by a camera (Photo courtesy of the Landes Group).
With the use of advanced optical tools and sophisticated mathematics, researchers have found a way to target the location of specific sequences along single strands of DNA, a technique that could someday help diagnose genetic diseases.

Proof-of-concept research in the Rice University (Houston, TX, USA) lab of chemist Dr. Christy Landes identified DNA sequences as short as 50 nucleotides at room temperature, an achievement she noted is unfeasible with conventional microscopes that cannot see objects that tiny, or electron microscopes that require targets to be cryogenically frozen or in a vacuum.

The technique called super-localization microscopy has been known for a while, according to Dr. Landes, but its application in biosensing is in its early stages. Scientists have seen individual double-stranded DNA molecules under optical microscopes for a long time, but the ability to visualize single-stranded DNA is a new achievement, and breaking the diffraction limit of light adds value, she noted.

The study was published online September 27, 2013, in the American Chemical Society journal Applied Materials and Interfaces. The Rice researchers call their super-resolution technique motion blur point accumulation for imaging in nanoscale topography (mbPAINT). Using it, they resolved structures as small as 30 nm by making, fundamentally, a movie of fluorescent DNA probes flowing over a known target sequence along an immobilized single strand of DNA.

The probes are labeled with a fluorescent dye that lights up only when attached to the target DNA. In the experimental setup, most would flow by unseen, but some would bind to the target for a few milliseconds, just long enough to be captured by the camera before the moving liquid pulled them away. Processing images of these brief occurrences among the background blur allows the researchers to image objects smaller than the natural diffraction limits of light-based imaging, which do not allow for the resolution of targets smaller than the wavelength of light used to illuminate them.

Even the Dr. Landes lab’s system is subject to these physical boundaries. Individual images of fluorescing probes on targets are only a pixelated blur. However, it is a blur with a bright spot, and comprehensive analysis of multiple images allows the investigators to locate that spot along the strand.

Dr. Landes reported one objective for mbPAINT is to map minute fragments of DNA. “Eventually, we’d like to get down to a couple of nucleotides,” she said. “Some diseases are characterized by one amino acid mutation, which is three nucleotides, and there are many diseases associated with very small genetic mutations that we’d like to be able to identify. We’re thinking this method will be ideally suited for diseases associated with small, localized mutations that are not possible to detect in any other inexpensive way.”

Dr. Landes envisions mpPAINT as not only more cost-effective but also able to capture information electron microscopes cannot. “One of the reasons people invented electron microscopy is to image objects smaller than light’s diffraction limit, because biomolecules such as proteins and DNAs are smaller than that,” she said. “But electron microscopy requires cryogenic temperatures or a vacuum. You can’t easily watch things react in solution. The advent of this technology allows us to see the biological processes of nano-sized objects as they happen in water, with buffers and salts, at room temperature, at body temperature or even in a cell. It’s very exciting.”

Related Links:

Rice University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.