Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

DNA Methylation Generates Differential Gene Expression in Sister Stem Cells

By BiotechDaily International staff writers
Posted on 14 Oct 2013
Image: A DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons).
Image: A DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons).
DNA methylation was shown to be primarily responsible for differences in gene expression displayed by "sister" stem cells.

Despite having identical DNA, sister embryonic stem cells (ESCs) can display considerable differences in their molecular characteristics. How stem cells regulate expression of their genes is crucial to many fundamental biological processes, such as embryonic development, regeneration, and turnover of blood, skin, and other tissues in the body, but especially to cancer.

In a study published in the September 26, 2013, online edition of the journal Stem Cell Reports investigators at the Institute of Cancer Research (London, United Kingdom) used a novel microdissection technique to examine differences in expression of 48 key genes between sister stem cells.

Their system, which was based on single cell RNA analysis, revealed considerable diversities between sister ESCs at both pluripotent and differentiated states. When the stem cells were grown in the presence inhibitors that induced the cells to revert to their most primitive stem cell state, gene expression between sister cells was significantly more similar.

DNA methyltransferases were downregulated in the inhibited ESCs, and the loss of these enzymes was sufficient to generate nearly identical sister cells. These results suggest that DNA methylation was a major cause of the diversity between sister cells at the pluripotent states. DNA methylation stably alters the expression of genes in cells as they divide and differentiate from embryonic stem cells into specific tissues. The resulting change is normally permanent and unidirectional, preventing a differentiated cell from reverting back to a stem cell or converting into another type of tissue.

Senior author Dr. Tomoyuki Sawado, leader of the stem cells and chromatin team at The Institute of Cancer Research, said, "Embryonic stem cell division is generally believed to be a symmetrical process, but what we found was that sister cells are actually often quite different from one another. We used a new technique to separate paired stem cells combined with assays that measure RNA in individual cells. Our research showed that sister stem cells display considerable differences in which genes are expressed. These differences are advantageous for normal stem cells in their constantly changing environment, and in cancer cells, the same characteristics can enable them to evade treatments. If we can control a process like DNA methylation that creates diversity in cell populations, we could create more efficient treatments for cancer."

Related Links:

The Institute of Cancer Research


Drug Discovery

view channel
Image: Use of catchphrase terms like “breakthrough” and “promising” in public news media presenting new drugs tends to result in incorrect assumptions and conclusions about the meaning and significance of criteria for FDA breakthrough-designated and accelerated-approval drugs (Photo courtesy of Dartmouth Institute).

Words That Inappropriately Enhance Perception of New Drug’s Effectiveness

Researchers have found that using the words “breakthrough” and “promising” in presenting a new drug to the general public often has a dramatic effect on judgment about its effectiveness.... Read more

Lab Technologies

view channel

New Genomic Research Kit Simplifies Exome Studies

An exciting new tool is now available for biotech researchers working in the field of genomic analysis. The human exome is critical to our genetic make-up and is generally accepted as having the greatest influence on how the genetic blueprint is utilized. The exome is defined as all coding exons in the genome and is... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.