Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

DNA Methylation Generates Differential Gene Expression in Sister Stem Cells

By BiotechDaily International staff writers
Posted on 14 Oct 2013
Print article
Image: A DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons).
Image: A DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons).
DNA methylation was shown to be primarily responsible for differences in gene expression displayed by "sister" stem cells.

Despite having identical DNA, sister embryonic stem cells (ESCs) can display considerable differences in their molecular characteristics. How stem cells regulate expression of their genes is crucial to many fundamental biological processes, such as embryonic development, regeneration, and turnover of blood, skin, and other tissues in the body, but especially to cancer.

In a study published in the September 26, 2013, online edition of the journal Stem Cell Reports investigators at the Institute of Cancer Research (London, United Kingdom) used a novel microdissection technique to examine differences in expression of 48 key genes between sister stem cells.

Their system, which was based on single cell RNA analysis, revealed considerable diversities between sister ESCs at both pluripotent and differentiated states. When the stem cells were grown in the presence inhibitors that induced the cells to revert to their most primitive stem cell state, gene expression between sister cells was significantly more similar.

DNA methyltransferases were downregulated in the inhibited ESCs, and the loss of these enzymes was sufficient to generate nearly identical sister cells. These results suggest that DNA methylation was a major cause of the diversity between sister cells at the pluripotent states. DNA methylation stably alters the expression of genes in cells as they divide and differentiate from embryonic stem cells into specific tissues. The resulting change is normally permanent and unidirectional, preventing a differentiated cell from reverting back to a stem cell or converting into another type of tissue.

Senior author Dr. Tomoyuki Sawado, leader of the stem cells and chromatin team at The Institute of Cancer Research, said, "Embryonic stem cell division is generally believed to be a symmetrical process, but what we found was that sister cells are actually often quite different from one another. We used a new technique to separate paired stem cells combined with assays that measure RNA in individual cells. Our research showed that sister stem cells display considerable differences in which genes are expressed. These differences are advantageous for normal stem cells in their constantly changing environment, and in cancer cells, the same characteristics can enable them to evade treatments. If we can control a process like DNA methylation that creates diversity in cell populations, we could create more efficient treatments for cancer."

Related Links:

The Institute of Cancer Research



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.