Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

DNA Methylation Generates Differential Gene Expression in Sister Stem Cells

By BiotechDaily International staff writers
Posted on 14 Oct 2013
Image: A DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons).
Image: A DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons).
DNA methylation was shown to be primarily responsible for differences in gene expression displayed by "sister" stem cells.

Despite having identical DNA, sister embryonic stem cells (ESCs) can display considerable differences in their molecular characteristics. How stem cells regulate expression of their genes is crucial to many fundamental biological processes, such as embryonic development, regeneration, and turnover of blood, skin, and other tissues in the body, but especially to cancer.

In a study published in the September 26, 2013, online edition of the journal Stem Cell Reports investigators at the Institute of Cancer Research (London, United Kingdom) used a novel microdissection technique to examine differences in expression of 48 key genes between sister stem cells.

Their system, which was based on single cell RNA analysis, revealed considerable diversities between sister ESCs at both pluripotent and differentiated states. When the stem cells were grown in the presence inhibitors that induced the cells to revert to their most primitive stem cell state, gene expression between sister cells was significantly more similar.

DNA methyltransferases were downregulated in the inhibited ESCs, and the loss of these enzymes was sufficient to generate nearly identical sister cells. These results suggest that DNA methylation was a major cause of the diversity between sister cells at the pluripotent states. DNA methylation stably alters the expression of genes in cells as they divide and differentiate from embryonic stem cells into specific tissues. The resulting change is normally permanent and unidirectional, preventing a differentiated cell from reverting back to a stem cell or converting into another type of tissue.

Senior author Dr. Tomoyuki Sawado, leader of the stem cells and chromatin team at The Institute of Cancer Research, said, "Embryonic stem cell division is generally believed to be a symmetrical process, but what we found was that sister cells are actually often quite different from one another. We used a new technique to separate paired stem cells combined with assays that measure RNA in individual cells. Our research showed that sister stem cells display considerable differences in which genes are expressed. These differences are advantageous for normal stem cells in their constantly changing environment, and in cancer cells, the same characteristics can enable them to evade treatments. If we can control a process like DNA methylation that creates diversity in cell populations, we could create more efficient treatments for cancer."

Related Links:

The Institute of Cancer Research



Channels

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.