Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Gymnemic Acids Stabilize the Yeast Form of Candida albicans and Enhance Action of Antifungal Drugs

By BiotechDaily International staff writers
Posted on 24 Sep 2013
Image: Leaves of the medicinal plant Gymnema sylvestre (Photo courtesy of Wikimedia Commons).
Image: Leaves of the medicinal plant Gymnema sylvestre (Photo courtesy of Wikimedia Commons).
Image: Gymnemic acids prevent C. albicans yeast-to-hyphal transition and hyphal growths. Scale bars: five micrometers (Photo courtesy of Kansas State University).
Image: Gymnemic acids prevent C. albicans yeast-to-hyphal transition and hyphal growths. Scale bars: five micrometers (Photo courtesy of Kansas State University).
Small molecules isolated and purified from leaves of the ancient medicinal plant Gymnema sylvestre inhibit yeast-to-hypha conversion and hyphal growth in the fungus Candida albicans, which greatly enhances the effect of antifungal drug treatments.

Candida albicans is a diploid fungus that grows both as yeast and filamentous cells and is a causal agent of opportunistic oral and genital infections in humans. Systemic fungal infections, including those by C. albicans, have emerged as important causes of morbidity and mortality in immunocompromised patients. Furthermore, C. albicans biofilms may form on the surface of implantable medical devices, while hospital-acquired infections by C. albicans have become a cause of major health concerns.

Investigators at Kansas State University (Manhattan, USA) isolated and purified gymnemic acids (GAs) from Gymnema sylvestre. They reported in the September 11, 2013, online edition of the journal PLOS ONE that purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. In a model system, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued the worms from being killed by the fungus.

In addition to their effects on C. albicans, GAs also inhibited conidial germination and hyphal growth of another fungus, Aspergillus.

"We have shown that this compound is safe to use because it does not hurt our body cells, yet it blocks the virulence of this fungus under in vitro conditions," said senior author Dr. Govindsamy Vediyappan, assistant professor of biology at Kansas State University. "Taking the medicine could potentially help patients control the invasive growth of the fungus."

C. albicans also makes a biofilm that can be difficult to treat. The investigators found that the gymnemic acid compounds converted the biofilm back to treatable yeast cells.

"This compound prevents the biofilm formation because hyphae are the major builders of biofilms and biofilms are resistant to antifungals," said Dr. Vediyappan. "Yeast cells by themselves cannot make biofilms and are sensitive to antifungal treatments."

Related Links:
Kansas State University


Channels

Genomics/Proteomics

view channel
Image: Many molecular biology studies begin with purified DNA and RNA extracted from complex environments such as the human gut (Photo courtesy of Los Alamos [US] National Laboratory).

New Metagenomics Analysis Tool Reduces False Discovery Rates

Genomic researchers recently described a novel new tool for analyzing the complex data generated during DNA screens of mixed populations of organisms such as the human gut microbiome. DNA screening... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

“Softer” Mass Spec Techniques Gain Advantage in Biomarker Discovery

Two mass spectrometry (MS) technologies, MALDI and DESI, are increasing in applications as their effectiveness is established, according to Kalorama Information (New York, NY, USA) in its report “Proteomics Markets for Research and IVD Applications (Mass Spectrometry, Chromatography, Microarrays, Electrophoresis, Immunoassays,... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.