Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Nanoscale DNA Cages for Directed Delivery of Small Drug Compounds

By BiotechDaily International staff writers
Posted on 12 Sep 2013
Image: A DNA cage (at left), with lipid-like molecules (in blue). The lipids come together in a "handshake" within the cage (center image) to encapsulate small-molecule drugs (purple). The molecules are released (at right) in response to the presence of a specific nucleic acid (Photo courtesy of Thomas Edwardson, McGill University).
Image: A DNA cage (at left), with lipid-like molecules (in blue). The lipids come together in a "handshake" within the cage (center image) to encapsulate small-molecule drugs (purple). The molecules are released (at right) in response to the presence of a specific nucleic acid (Photo courtesy of Thomas Edwardson, McGill University).
A novel method for directed drug delivery is based on enclosing low molecular weight compounds in nanoscale "cages" built of DNA strands that sequester the compound until contact with a specific nucleic acid sequence triggers release of the drug.

Investigators at McGill University (Montreal, Canada) had shown previously that drugs could be loaded into gold nanoparticles that could be inserted and released from DNA nanotubes. In the current study, they greatly reduced the size of the carrier DNA constructs. Highly branched alkyl-DNA conjugates were hybridized to the edges of a DNA cube. When four amphiphiles were on one face, the hydrophobic residues of two neighboring cubes engaged in an intermolecular "handshake,” resulting in a dimer. When there were eight amphiphiles (four on the top and bottom cube faces, respectively), they engaged in an intramolecular "handshake" inside the cube. The DNA cube thus surrounded a lipid-like space into which small molecule compounds could be loaded.

Details of the construction and testing of DNA "nanocages" were published in the September 1, 2013, online edition of the journal Nature Chemistry. This paper described the creation of a three-dimensional pattern of hydrophobic patches, like side chains in proteins, which resulted in the specific, directed association of hydrophobic domains with orthogonal interactions to DNA base pairing. This formed the first example of a monodisperse micelle within a DNA nanostructure that encapsulated small molecules and released them by DNA recognition.

"This research is important for drug delivery, but also for fundamental structural biology and nanotechnology," said senior author Dr. Hanadi Sleiman, professor of chemistry at McGill University.

The investigators are now conducting cell and animal studies to assess the viability of this method on chronic lymphocytic leukemia (CLL) and prostate cancer.

Related Links:

McGill University



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.