Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Nanoscale DNA Cages for Directed Delivery of Small Drug Compounds

By BiotechDaily International staff writers
Posted on 12 Sep 2013
Image: A DNA cage (at left), with lipid-like molecules (in blue). The lipids come together in a "handshake" within the cage (center image) to encapsulate small-molecule drugs (purple). The molecules are released (at right) in response to the presence of a specific nucleic acid (Photo courtesy of Thomas Edwardson, McGill University).
Image: A DNA cage (at left), with lipid-like molecules (in blue). The lipids come together in a "handshake" within the cage (center image) to encapsulate small-molecule drugs (purple). The molecules are released (at right) in response to the presence of a specific nucleic acid (Photo courtesy of Thomas Edwardson, McGill University).
A novel method for directed drug delivery is based on enclosing low molecular weight compounds in nanoscale "cages" built of DNA strands that sequester the compound until contact with a specific nucleic acid sequence triggers release of the drug.

Investigators at McGill University (Montreal, Canada) had shown previously that drugs could be loaded into gold nanoparticles that could be inserted and released from DNA nanotubes. In the current study, they greatly reduced the size of the carrier DNA constructs. Highly branched alkyl-DNA conjugates were hybridized to the edges of a DNA cube. When four amphiphiles were on one face, the hydrophobic residues of two neighboring cubes engaged in an intermolecular "handshake,” resulting in a dimer. When there were eight amphiphiles (four on the top and bottom cube faces, respectively), they engaged in an intramolecular "handshake" inside the cube. The DNA cube thus surrounded a lipid-like space into which small molecule compounds could be loaded.

Details of the construction and testing of DNA "nanocages" were published in the September 1, 2013, online edition of the journal Nature Chemistry. This paper described the creation of a three-dimensional pattern of hydrophobic patches, like side chains in proteins, which resulted in the specific, directed association of hydrophobic domains with orthogonal interactions to DNA base pairing. This formed the first example of a monodisperse micelle within a DNA nanostructure that encapsulated small molecules and released them by DNA recognition.

"This research is important for drug delivery, but also for fundamental structural biology and nanotechnology," said senior author Dr. Hanadi Sleiman, professor of chemistry at McGill University.

The investigators are now conducting cell and animal studies to assess the viability of this method on chronic lymphocytic leukemia (CLL) and prostate cancer.

Related Links:

McGill University



RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.