Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Receptor May Help Spread of Alzheimer’s and Parkinson’s in Brain

By BiotechDaily International staff writers
Posted on 10 Sep 2013
Image: Electron micrograph shows clumps of corrupted tau protein outside a nerve cell. Scientists have identified a receptor that lets these clumps into the cell, where the corruption can spread. Blocking this receptor with drugs may help treat Alzheimer’s, Parkinson’s and other disorders (Photo courtesy of PNAS - Proceedings of the National Academy of Sciences of the United States of America).
Image: Electron micrograph shows clumps of corrupted tau protein outside a nerve cell. Scientists have identified a receptor that lets these clumps into the cell, where the corruption can spread. Blocking this receptor with drugs may help treat Alzheimer’s, Parkinson’s and other disorders (Photo courtesy of PNAS - Proceedings of the National Academy of Sciences of the United States of America).
Scientists have found the process in which corrupted, disease-causing proteins spread in the brain, potentially contributing to Alzheimer’s disease, Parkinson’s disease, and other brain-damaging disorders.

The research identifies a specific type of receptor and suggests that blocking it may help treat of these disorders. The receptors are called heparan sulfate proteoglycans (HSPGs). “Many of the enzymes that create HSPGs or otherwise help them function are good targets for drug treatments,” said senior author Marc I. Diamond, MD, a professor of neurology at the Washington University School of Medicine in St. Louis (MO, USA). “We ultimately should be able to hit these enzymes with drugs and potentially disrupt several neurodegenerative conditions.”

The study’s findings were published online August 2013 in the Proceedings of the National Academy of Sciences of the United States of America (PNAS). Over the 10 years, Dr. Diamond has gathered evidence that Alzheimer’s disease and other neurodegenerative disorders spread through the brain in a manner similar to conditions such as mad cow disease, which are caused by misfolded proteins known as prions.

Dr. Diamond and his colleagues have shown that a part of nerve cells’ inner structure known as tau protein can misfold into a formation called an amyloid. These corrupted versions of tau adhere to each other in clumps within the cells. Similar to prions, the clumps spread from one cell to another, seeding additional dispersal by causing copies of tau protein in the new cell to change into amyloids.

In the new study, first author Brandon Holmes, an MD/PhD student, demonstrated that HSPGs are necessary for binding, internalizing, and dispersing clumps of tau. When he genetically inactivated or chemically modified the HSPGs in cell cultures and in a mouse model, clumps of tau could not enter cells, thereby suppressing the spread of misfolded tau from cell to cell. Mr. Holmes also found that HSPGs are essential for the cell-to-cell spread of degraded forms of alpha-synuclein, a protein linked to Parkinson’s disease.

“This suggests that it may one day be possible to unify our understanding and treatment of two or more broad classes of neurodegenerative disease,” Dr. Diamond concluded. “We’re now sorting through about 15 genes to determine which are the most essential for HSPGs’ interaction with tau,” Mr. Holmes said. “That will tell us which proteins to target with new drug treatments.”

Related Links:
Washington University School of Medicine in St. Louis

comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.