Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

25 May 2016 - 27 May 2016
06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016

Stem Cell-Based Cerebral Organoids Enable in Vitro Study of Human Brain Development and Microcephaly

By BiotechDaily International staff writers
Posted on 09 Sep 2013
Print article
Image: Comparison of the organoid (right) to the developing brain (left, section of a mouse brain) (Photo courtesy of the Institute of Molecular Biotechnology of the Austrian Academy of Sciences).
Image: Comparison of the organoid (right) to the developing brain (left, section of a mouse brain) (Photo courtesy of the Institute of Molecular Biotechnology of the Austrian Academy of Sciences).
Austrian researchers have used advanced stem cell technology to grow cultures of cerebral organoids, or "mini-brains," which enable the in vitro study of human neuronal disorders.

The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Investigators at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (Vienna) have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, which develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes.

The investigators reported in the August 28, 2013, online edition of the journal Nature that after 15–20 days of culture growth cerebral organoids formed that consisted of continuous tissue (neuroepithelia) surrounding a fluid-filled cavity that was reminiscent of a cerebral ventricle. After 20–30 days, defined brain regions, including a cerebral cortex, retina, meninges, as well as choroid plexus, developed. After two months, the mini-brains reached a maximum size, but they could survive indefinitely (currently up to 10 months) in a spinning bioreactor. Further growth, however, was not achieved, most likely due to the lack of a circulation system and hence a lack of nutrients and oxygen at the core of the mini-brains

Cerebral organoids were shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. The investigators used RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. They demonstrated premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype.

Senior author Dr. Jürgen Knoblich, deputy scientific director of the Institute of Molecular Biotechnology of the Austrian Academy of Sciences, said, "We modified an established approach to generate so-called neuroectoderm, a cell layer from which the nervous system derives. Fragments of this tissue were then maintained in a 3D-culture and embedded in droplets of a specific gel that provided a scaffold for complex tissue growth. In order to enhance nutrient absorption, we later transferred the gel droplets to a spinning bioreactor. Within three to four weeks defined brain regions were formed."

Related Links:
Institute of Molecular Biotechnology of the Austrian Academy of Sciences



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.