Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Gene Expression Study Confirms Age-Related Memory Loss Is Distinct from Alzheimer's Disease

By BiotechDaily International staff writers
Posted on 05 Sep 2013
Image: Researchers have identified the protein RbAp48, that, when increased in aged wild-type mice, improves memory back to that of young wild-type mice. In the image, yellow shows the increased RbAp48 in the dentate gyrus (Photo courtesy of Dr. Elias Pavlopoulos, Columbia University Medical Center).
Image: Researchers have identified the protein RbAp48, that, when increased in aged wild-type mice, improves memory back to that of young wild-type mice. In the image, yellow shows the increased RbAp48 in the dentate gyrus (Photo courtesy of Dr. Elias Pavlopoulos, Columbia University Medical Center).
Image: Dr. Eric R. Kandel, winner of the 2000 Nobel Prize in Physiology or Medicine (Photo courtesy of Columbia University).
Image: Dr. Eric R. Kandel, winner of the 2000 Nobel Prize in Physiology or Medicine (Photo courtesy of Columbia University).
Decline in the activity of the gene that codes for the protein RbAp48 (retinoblastoma binding protein 4) in the hippocampus has been linked to age-related memory loss, a condition not related to Alzheimer's disease.

Investigators at the Columbia University Medical Center (New York, NY, USA) were looking for the genomic and molecular basis for age-related memory loss in the dentate gyrus (DG), a subregion of the hippocampal formation thought to be targeted by aging. To this end, they used DNA microarray analysis to evaluate gene expression in human postmortem tissue harvested from both the DG and the entorhinal cortex (EC), a neighboring subregion unaffected by aging and known to be the site of onset of Alzheimer's disease.

Results from this study revealed that 17 genes demonstrated reliable age-related changes in the DG. The most significant change was an age-related decline in RbAp48, a histone-binding protein that modifies histone acetylation.

To test whether the RbAp48 decline could be responsible for age-related memory loss, the investigators turned to mice and found that, consistent with humans, RbAp48 was less abundant in the DG of old than in young mice. The investigators then genetically engineered a line of mice that lacked expression of RbAp48 in the forebrain. Results published in the August 28, 2013, online edition of the journal Science Translational Medicine revealed that inhibition of RbAp48 in young mice caused hippocampus-dependent memory deficits similar to those associated with aging, as measured by novel object recognition and water maze tests. Functional magnetic resonance imaging studies showed that within the hippocampal formation, dysfunction was selectively observed in the DG, and this corresponded to a regionally selective decrease in histone acetylation.

The use of a viral gene transfer technique to increase RbAp48 expression in the DG of aged mice resulted in the reversal of age-related hippocampus-based memory loss and age-related abnormalities in histone acetylation.

“Our study provides compelling evidence that age-related memory loss is a syndrome in its own right, apart from Alzheimer’s. In addition to the implications for the study, diagnosis, and treatment of memory disorders, these results have public health consequences,” said senior author Dr. Eric R. Kandel, professor of brain science at Columbia University and a winner of the 2000 Nobel Prize in Physiology or Medicine. “The fact that we were able to reverse age-related memory loss in mice is very encouraging. Of course, it is possible that other changes in the DG contribute to this form of memory loss. But at the very least, it shows that this protein is a major factor, and it speaks to the fact that age-related memory loss is due to a functional change in neurons of some sort. Unlike with Alzheimer's, there is no significant loss of neurons.”

Related Links:
Columbia University Medical Center



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.