Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Blocking Ether Lipid Synthesis Prevents Tumor Growth

By BiotechDaily International staff writers
Posted on 04 Sep 2013
Tumor cells have elevated levels of ether lipids, and blocking the activity of an enzyme critical to their synthesis was found to have profound anticancer benefits.

Levels of ether lipids, which are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage as opposed to the usual ester linkage, are higher in tumors than in normal tissues, but their specific function in cancer has remained unclear.

In a recent study, investigators at the University of California, Berkeley (USA) looked at the metabolism of ether lipids and the ramifications of interfering with their synthesis.

They reported in the August 26, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that the metabolic enzyme alkylglyceronephosphate synthase (AGPS), which catalyzes a critical step in the synthesis of ether lipids, was upregulated across multiple types of aggressive human cancer cells and primary tumors. Inhibition of AGPS in cancer cells resulted in reduced cell survival, cancer aggressiveness, and tumor growth through altering the balance of ether lipid, fatty acid, eicosanoid, and fatty acid-derived glycerophospholipid metabolism, resulting in an overall reduction in the levels of several oncogenic signaling lipids.

"Cancer cells make and use a lot of fat and lipids, and that makes sense because cancer cells divide and proliferate at an accelerated rate, and to do that, they need lipids, which make up the membranes of the cell," said senior author Dr. Daniel Nomura, assistant professor of nutritional sciences and toxicology at the University of California, Berkeley. "The cancer cells were less able to move and invade. Lipids have a variety of uses for cellular structure, but what we are showing with our study is that lipids can also send signals that fuel cancer growth."

The investigators also evaluated the impact of inhibiting AGPS in mice that had been injected with cancer cells. "Among the mice that had the AGPS enzyme inactivated, the tumors were nonexistent," said Dr. Nomura. "The mice that did not have this enzyme disabled rapidly developed tumors."

Research is now underway to develop AGPS inhibitors for use in cancer therapy.

Related Links:
University of California, Berkeley




Channels

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.