Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Blocking Ether Lipid Synthesis Prevents Tumor Growth

By BiotechDaily International staff writers
Posted on 04 Sep 2013
Tumor cells have elevated levels of ether lipids, and blocking the activity of an enzyme critical to their synthesis was found to have profound anticancer benefits.

Levels of ether lipids, which are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage as opposed to the usual ester linkage, are higher in tumors than in normal tissues, but their specific function in cancer has remained unclear.

In a recent study, investigators at the University of California, Berkeley (USA) looked at the metabolism of ether lipids and the ramifications of interfering with their synthesis.

They reported in the August 26, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that the metabolic enzyme alkylglyceronephosphate synthase (AGPS), which catalyzes a critical step in the synthesis of ether lipids, was upregulated across multiple types of aggressive human cancer cells and primary tumors. Inhibition of AGPS in cancer cells resulted in reduced cell survival, cancer aggressiveness, and tumor growth through altering the balance of ether lipid, fatty acid, eicosanoid, and fatty acid-derived glycerophospholipid metabolism, resulting in an overall reduction in the levels of several oncogenic signaling lipids.

"Cancer cells make and use a lot of fat and lipids, and that makes sense because cancer cells divide and proliferate at an accelerated rate, and to do that, they need lipids, which make up the membranes of the cell," said senior author Dr. Daniel Nomura, assistant professor of nutritional sciences and toxicology at the University of California, Berkeley. "The cancer cells were less able to move and invade. Lipids have a variety of uses for cellular structure, but what we are showing with our study is that lipids can also send signals that fuel cancer growth."

The investigators also evaluated the impact of inhibiting AGPS in mice that had been injected with cancer cells. "Among the mice that had the AGPS enzyme inactivated, the tumors were nonexistent," said Dr. Nomura. "The mice that did not have this enzyme disabled rapidly developed tumors."

Research is now underway to develop AGPS inhibitors for use in cancer therapy.

Related Links:
University of California, Berkeley




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.