Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

New Software Tool Identifies Driver Genes and Pathways in Cancer Sequencing Studies

By BiotechDaily International staff writers
Posted on 03 Sep 2013
Print article
Cancer researchers have developed a software tool that enables them to identify the driver mutations that underlie the transformation of normal cells and tissues into malignancies.

Cancers are caused by the accumulation of genomic alterations. Driver mutations are required for the expression of a cancer phenotype, whereas passenger mutations are irrelevant to tumor development and accumulate through DNA replication. A major challenge facing the field of cancer genome sequencing has been identifying cancer-associated driver gene mutations.

Investigators at the Medical College of Wisconsin (Milwaukee, USA) have described a powerful and flexible statistical framework for identifying driver genes and driver signaling pathways in cancer genome-sequencing studies. Biological knowledge of the mutational process in tumors was fully integrated into their statistical models, which included such variables as the length of protein-coding regions, transcript isoforms, variation in mutation types, differences in background mutation rates, the redundancy of genetic code, and multiple mutations in one gene.

A detailed description of the software tool, which was nicknamed DrGaP—for Driver Genes and Pathways—was published in the August 15, 2013, online edition of the American Journal of Human Genetics.

"DrGaP is immediately applicable to cancer genome sequencing studies and will lead a more complete identification of altered driver genes and driver signaling pathways in cancer," said senior author Dr. Pengyuan Liu, associate professor of physiology at the Medical College of Wisconsin. "Biological knowledge of the mutation process is fully integrated into the models, and provides several significant improvements and increased power over current methods."

Related Links:
Medical College of Wisconsin



Print article

Channels

Genomics/Proteomics

view channel
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).

Molecular Pathway Controlling High-affinity Antibody Production Identified

A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.