Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

New Software Tool Identifies Driver Genes and Pathways in Cancer Sequencing Studies

By BiotechDaily International staff writers
Posted on 03 Sep 2013
Cancer researchers have developed a software tool that enables them to identify the driver mutations that underlie the transformation of normal cells and tissues into malignancies.

Cancers are caused by the accumulation of genomic alterations. Driver mutations are required for the expression of a cancer phenotype, whereas passenger mutations are irrelevant to tumor development and accumulate through DNA replication. A major challenge facing the field of cancer genome sequencing has been identifying cancer-associated driver gene mutations.

Investigators at the Medical College of Wisconsin (Milwaukee, USA) have described a powerful and flexible statistical framework for identifying driver genes and driver signaling pathways in cancer genome-sequencing studies. Biological knowledge of the mutational process in tumors was fully integrated into their statistical models, which included such variables as the length of protein-coding regions, transcript isoforms, variation in mutation types, differences in background mutation rates, the redundancy of genetic code, and multiple mutations in one gene.

A detailed description of the software tool, which was nicknamed DrGaP—for Driver Genes and Pathways—was published in the August 15, 2013, online edition of the American Journal of Human Genetics.

"DrGaP is immediately applicable to cancer genome sequencing studies and will lead a more complete identification of altered driver genes and driver signaling pathways in cancer," said senior author Dr. Pengyuan Liu, associate professor of physiology at the Medical College of Wisconsin. "Biological knowledge of the mutation process is fully integrated into the models, and provides several significant improvements and increased power over current methods."

Related Links:
Medical College of Wisconsin



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.