Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Genetic Clues to Epilepsy Discovered

By BiotechDaily International staff writers
Posted on 29 Aug 2013
Image: Positron emission tomography of epileptic brain (Photo courtesy of Seattle Children’s Hospital).
Image: Positron emission tomography of epileptic brain (Photo courtesy of Seattle Children’s Hospital).
A breakthrough for neurological disorders was reached with innovative genetic technology when two genes were discovered linked to severe forms of childhood epilepsy.

Exome sequencing was used to detect the mutations in DNA sequences that could cause two forms of childhood epilepsy: infantile spasms and Lennox-Gastaut Syndrome—diseases that affect more than two million people in the USA.

A team of scientists led by those at Duke University Medical Center (Durham, NC, USA) screened for de novo mutations in patients with two classical epileptic encephalopathies, 149 who had infantile spasms, and 115 diagnosed with Lennox-Gastaut syndrome. The exome sequences of 264 epileptic children were compared with those of the parents, who did not have the neurological disease. To identify any disease-causing mutations, the investigators analyzed the sequences using various statistical tools.

The results of the study revealed disease-causing mutations in six genes, four of which had been uncovered before in previous studies, but two were discovered for the first time. Among these were the gene encoding for gamma-aminobutyric acid receptor subunit beta-3 (GABRB3), with de novo mutations in four patients, and the gene encoding for the asparagine-linked glycosylation 13 homolog (ALG13), with the same de novo mutation in two patients. Both genes show clear statistical evidence of association with epileptic encephalopathy.

The scientists say that by using novel genetic analysis techniques they also revealed that epilepsy-causing mutations in humans are concentrated in genes that are intolerant or highly sensitive to changes in their DNA sequence. They add that the genes are so sensitive that the smallest change in their DNA sequence means the gene may not work, which could lead to death or severe forms of diseases. Results showed that up to 90 genes could carry epilepsy-causing mutations, and many of these have been previously linked to other neurological disorders, such as autism.

David B. Goldstein, PhD, a study leader, said, “It appears that the time for using this genome approach to understand complex neurological disorders has arrived. One of the most encouraging aspects of this study is that we're beginning to see how best to interpret and make effective use of exome sequence data. We anticipate that further studies will identify many new disease-causing genes and we intend to develop a watch list of the genes which summarizes their clinical characteristics in way that will be helpful for doctors, patients and other scientists." The study was published on August 11, 2013, in the journal Nature.

Related Links:
Duke University Medical Center




BIOSIGMA S.R.L.
RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: On target: When researchers introduced nanobodies they made to cells engineered to express a tagged version of a protein in skeletal fibers known as tubulin (red), the nanobodies latched on. The cells above have recently divided (Photo courtesy of Rockefeller University).

Turning Antibodies into Precisely Tuned Nanobodies

New technology has the potential to create nanobodies making them much more accessible than antibodies for all sorts of research. Antibodies control the process of recognizing and zooming in on molecular... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.