Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Genetic Clues to Epilepsy Discovered

By BiotechDaily International staff writers
Posted on 29 Aug 2013
Print article
Image: Positron emission tomography of epileptic brain (Photo courtesy of Seattle Children’s Hospital).
Image: Positron emission tomography of epileptic brain (Photo courtesy of Seattle Children’s Hospital).
A breakthrough for neurological disorders was reached with innovative genetic technology when two genes were discovered linked to severe forms of childhood epilepsy.

Exome sequencing was used to detect the mutations in DNA sequences that could cause two forms of childhood epilepsy: infantile spasms and Lennox-Gastaut Syndrome—diseases that affect more than two million people in the USA.

A team of scientists led by those at Duke University Medical Center (Durham, NC, USA) screened for de novo mutations in patients with two classical epileptic encephalopathies, 149 who had infantile spasms, and 115 diagnosed with Lennox-Gastaut syndrome. The exome sequences of 264 epileptic children were compared with those of the parents, who did not have the neurological disease. To identify any disease-causing mutations, the investigators analyzed the sequences using various statistical tools.

The results of the study revealed disease-causing mutations in six genes, four of which had been uncovered before in previous studies, but two were discovered for the first time. Among these were the gene encoding for gamma-aminobutyric acid receptor subunit beta-3 (GABRB3), with de novo mutations in four patients, and the gene encoding for the asparagine-linked glycosylation 13 homolog (ALG13), with the same de novo mutation in two patients. Both genes show clear statistical evidence of association with epileptic encephalopathy.

The scientists say that by using novel genetic analysis techniques they also revealed that epilepsy-causing mutations in humans are concentrated in genes that are intolerant or highly sensitive to changes in their DNA sequence. They add that the genes are so sensitive that the smallest change in their DNA sequence means the gene may not work, which could lead to death or severe forms of diseases. Results showed that up to 90 genes could carry epilepsy-causing mutations, and many of these have been previously linked to other neurological disorders, such as autism.

David B. Goldstein, PhD, a study leader, said, “It appears that the time for using this genome approach to understand complex neurological disorders has arrived. One of the most encouraging aspects of this study is that we're beginning to see how best to interpret and make effective use of exome sequence data. We anticipate that further studies will identify many new disease-causing genes and we intend to develop a watch list of the genes which summarizes their clinical characteristics in way that will be helpful for doctors, patients and other scientists." The study was published on August 11, 2013, in the journal Nature.

Related Links:
Duke University Medical Center




Print article

Channels

Genomics/Proteomics

view channel
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).

Molecular Pathway Controlling High-affinity Antibody Production Identified

A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.