Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

New Genome Engineering Technique Eases Gene Repair in Human Pluripotent Stem Cells

By BiotechDaily International staff writers
Posted on 29 Aug 2013
Image: RNA-Guided Nucleases (RGNs), based on naturally occurring Type II CRISPR-Cas systems, are programmable endonucleases that can be used to perform targeted genome editing (Photo courtesy of Addgene).
Image: RNA-Guided Nucleases (RGNs), based on naturally occurring Type II CRISPR-Cas systems, are programmable endonucleases that can be used to perform targeted genome editing (Photo courtesy of Addgene).
An RNA-guided, DNA-cleaving interference pathway from bacteria [the type II clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) pathway] has been adapted for use in eukaryotic cells, greatly facilitating genome editing.

The CRISPR/Cas (CRISPR associated) system is a new genome-engineering technology recently developed from prokaryotes' adaptive immune response systems. The CRISPR system uses a short, noncoding RNA (crRNA) to target a human codon-optimized Cas9 nuclease to complementary (protospacer) sequences in the host genome. These sequences or arrays are composed of direct repeats that are separated by similarly sized nonrepetitive spacers. CRISPR arrays, together with a group of associated proteins, confer resistance to phages, possibly by an RNA-interference-like mechanism.

Investigators at the University of Wisconsin (Madison USA) and their colleagues at Northwestern University (Evanston, IL, USA) used a CRISPR-Cas system identified in the bacterium Neisseria meningitidis, which is distinct from the commonly used Streptococcus pyogenes system, to demonstrate efficient genome engineering in human pluripotent stem cells (hPSCs).

Heretofore, only two CRISPR-Cas systems (from S. pyogenes and S. thermophilus), each with their own distinct targeting requirements and limitations, had been developed for genome editing. In addition, only limited information existed regarding homology-directed repair (HDR)-mediated gene targeting using long donor DNA templates in hPSCs with these systems.

The investigators wrote in the August 12, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that by employing a distinct CRISPR-Cas system from N. meningitidis, they were able to demonstrate efficient targeting of an endogenous gene in three hPSC lines using HDR. The Cas9 RNA-guided endonuclease from N. meningitidis (NmCas9) recognized a protospacer adjacent motif (PAM) different from those recognized by Cas9 proteins from S. pyogenes and S. thermophilus (SpCas9 and StCas9, respectively). Similar to SpCas9, NmCas9 was able to use a single-guide RNA (sgRNA) to direct its activity. Because of its distinct protospacer adjacent motif, the N. meningitidis CRISPR-Cas machinery increased the sequence contexts amenable to RNA-directed genome editing.

“Human pluripotent stem cells can proliferate indefinitely and they give rise to virtually all human cell types, making them invaluable for regenerative medicine, drug screening, and biomedical research,” said senior author Dr. James A. Thomson, professor of embryonic stem cell biology at the University of Wisconsin. “Our collaboration with the Northwestern team has taken us further toward realizing the full potential of these cells because we can now manipulate their genomes in a precise, efficient manner. With this system, there is the potential to repair any genetic defect, including those responsible for some forms of breast cancer, Parkinson’s, and other diseases.”

Related Links:
University of Wisconsin
Northwestern University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel

Precise Ion Irradiation Dosing Method Developed for Cancer Therapy

Scientists are employing nuclear physics principles to provide more effective approaches to radiotherapy treatment for cancer patients. Radiation therapy using heavy ions is best suitable for cancer patients with tumors that are difficult to access, such as in the brain. These particles scarcely damage the penetrated... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.