Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Computer Models Help to Develop Improved Gene Therapy Vectors

By BiotechDaily International staff writers
Posted on 29 Aug 2013
Image: Electron micrograph of adeno-associated viruses (AAVs) (Photo courtesy of Dr. Graham Beards at en.wikipedia).
Image: Electron micrograph of adeno-associated viruses (AAVs) (Photo courtesy of Dr. Graham Beards at en.wikipedia).
Investigators in the field of gene therapy have used an advanced computer algorithm to predict how different adeno-associated viruses (AAVs) can be combined to form the optimum carriers of therapeutic genetic material.

AAVs are small viruses that infect humans and some other primate species. AAVs are not currently known to cause disease, and the virus induces a very mild immune response. Gene therapy vectors using AAV can infect both dividing and quiescent cells and persist in an extrachromosomal state without integrating into the genome of the host cell. These features make AAV an attractive candidate for creating viral vectors for gene therapy.

To develop quantitative design principles for guiding site-directed recombination of AAV capsids, investigators at Rice University (Houston, TX, USA) examined how capsid structural perturbations predicted by the SCHEMA algorithm correlated with experimental measurements of disruption in 17 chimeric capsid proteins.

They reported in the July 31, 2013, online addition of journal ACS Synthetic Biology that in a chimera population created by recombining AAV serotypes two and four, protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. The investigators did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half-packaged genomes, including those with the highest SCHEMA disruption. Thus, the SCHEMA algorithm should be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells.

“Gene therapy shows promise in the treatment of not only genetic disorders but also cancer and cardiovascular diseases,” said senior author Dr. Junghae Suh, assistant professor of bioengineering at Rice University. “But you need a mechanism to get the correct gene into the human body and to the target cells. To do that, people use gene vectors, and viruses encompass the largest category of vectors. They have naturally evolved to deliver genes into the body. Our goal is to reprogram them to target specific organs or tissues.”

“The big challenge is to go about this in a rational manner,” said Dr. Suh. “People have done a lot of work to solve the structure of viruses. We know what they look like. The question is: How can we use that information to guide the design of our viral vectors?”

Related Links:
Rice University


Channels

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.