Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Advanced Imaging Technique Tracks Molecular Movement in Membranes of Living Cells

By BiotechDaily International staff writers
Posted on 20 Aug 2013
Print article
Image: The STED-RICS microscope scans the fluorescent cell membrane with a light spot and, thus, an image is recorded (Photo courtesy of the Karlsruhe Institute of Technology).
Image: The STED-RICS microscope scans the fluorescent cell membrane with a light spot and, thus, an image is recorded (Photo courtesy of the Karlsruhe Institute of Technology).
Cell biologists have combined two advanced imaging techniques to study the movement of molecules in the membranes of living cells and tissues.

Investigators at Karlsruhe Institute of Technology (Germany) combined raster image correlation spectroscopy (RICS) with stimulated emission depletion microscopy (STED) in imaging experiments on model membranes and live cells.

RICS is a powerful tool to study fast molecular dynamics such as protein diffusion or receptor–ligand interactions inside living cells and tissues. By analyzing time dependent spatial correlations of fluorescence intensity fluctuations from raster-scanned microscopy images, molecular motions can be revealed in a spatially resolved manner. However, because of diffraction-limited optical resolution, conventional raster image-correlation spectroscopy can only distinguish larger regions of interest and requires low fluorophore concentrations in the nanomolar range.

To counter the limitations of RICS the investigators combined it with STED microscopy. A STED microscope is a fluorescence microscope where the light spot scanning the fluorescence image can be reduced considerably. This method has already been used successfully to reach a maximum resolution in the imaging of cells.

In the current study, which was published in the June 27, 2013, online edition of the journal Nature Communications, the investigators showed that STED-RICS microscopy offered enhanced multiplexing capability because of enhanced spatial resolution as well as access to 10–100 times higher fluorophore concentrations.

“This means that the STED-RICS method can be used to derive from any fluorescence image a highly resolved map of the number and movability of the marked molecules in the area scanned by the spot,” said senior author Dr. Gerd Ulrich Nienhaus, professor of applied physics at the Karlsruhe Institute of Technology.

Application of the STED-RICS technique will enable investigators to precisely and quantitatively track the movements of cell membrane lipids and receptors. The action of many drugs is linked to the interactions among these molecules. “About every second medical substance influences signal transduction of G-protein coupled receptors, an important subclass,” said Dr. Nienhaus.

Related Links:
Karlsruhe Institute of Technology


Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.