Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Visualizing How Cancer Chromosome Abnormalities Form in Living Cells

By BiotechDaily International staff writers
Posted on 20 Aug 2013
Image: In new research, scientists have directly observed events that lead to formation of a chromosome abnormality that is often found in cancer cells (Photo courtesy of National Cancer Institute [NCI] at NIH).
Image: In new research, scientists have directly observed events that lead to formation of a chromosome abnormality that is often found in cancer cells (Photo courtesy of National Cancer Institute [NCI] at NIH).
Scientists have for the first time directly observed events that lead to the formation of a chromosome abnormality that is frequently found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and then binds to another chromosome.

The study’s findings, conducted by scientists at the U.S. National Cancer Institute (NCI; Bethesda, MD, USA), part of the National Institutes of Health, were published August 9, 2013, in the journal Science. 

Chromosome translocations have been found in almost all cancer cells, and it has long been known that translocations can play a role in cancer development. However, spite of intensive of research, just precisely how translocations form in a cell has remained elusive. To better determine this process, the researchers created a research system in which they induced, in a controlled way, breaks in the DNA of different chromosomes in living cells. Using cutting-edge imaging technology, they were then able to see when the broken ends of the chromosomes were reattached correctly or incorrectly inside the cells.

Translocations are very rare occurrences, and the investigators’ ability to visualize these events in real time was made possible bya recently developed technology that is being used at the NCI that enables investigators to visualize alterations in thousands of cells over a long time. “Our ability to see this fundamental process in cancer formation was possible only because of access to revolutionary imaging technology,” said the study’s senior author, Tom Misteli, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI.

The scientists involved with this study were able to demonstrate that translocations can occur within hours of DNA breaks and that their formation is independent of when the breaks happen during the cell division cycle. Cells have intrinsic mending mechanisms that can fix most DNA breaks, but translocations at times still occur.

To additionally examine the role of DNA repair in translocation formation, the researchers curbed vital pieces of the DNA damage response processes within cells and monitored the effects on the repair of DNA breaks and translocation formation. They discovered that suppression of one element of DNA damage response processes, a protein called DNAPK-kinase, increased the occurrence of translocations almost 10-fold. The scientists also determined that translocations formed preferentially between prepositioned genes.

“These observations have allowed us to formulate a time and space framework for elucidating the mechanisms involved in the formation of chromosome translocations,” said Vassilis Roukos, PhD, NCI, and lead scientist of the study. “We can now finally begin to really probe how these fundamental features of cancer cells form.”

Related Links:
US National Cancer Institute


Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.