Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Neurons Derived from the Skin Cells of Epilepsy Patients Embody New Platform for Drug Testing

By BiotechDaily International staff writers
Posted on 08 Aug 2013
Print article
Image: This diagram shows the process by which scientists can take skin cells from patients with epilepsy, convert them to stem cells, and then create neurons (brain nerve cells) from them. The induced neurons contain the same genetic mutation(s) carried by the patients (Photo courtesy of the University of Michigan Medical School).
Image: This diagram shows the process by which scientists can take skin cells from patients with epilepsy, convert them to stem cells, and then create neurons (brain nerve cells) from them. The induced neurons contain the same genetic mutation(s) carried by the patients (Photo courtesy of the University of Michigan Medical School).
Stem cells derived from skin taken from juvenile epilepsy patients were induced to mature into cultures of neurons that were developed into a human-based system for the study of the genetic factors that underlie the disorder and for development of drugs to control the disease.

Investigators at the University of Michigan Medical School (Ann Arbor, USA) derived forebrain-like pyramidal- and bipolar-shaped neurons from two Dravet syndrome (DS) subjects and three human controls by iPSC (induced pluripotent stem cell) reprogramming of fibroblasts. DS is a severe form of childhood epilepsy typically caused by dominant mutations in the SCN1A (sodium channel, voltage-gated, type I, alpha subunit) gene encoding the voltage-gated sodium channel Nav1.1.

DS and control iPSC-derived neurons were compared using whole-cell patch clamp recordings. Sodium current density and intrinsic neuronal excitability were also examined. Results published in the July 2, 2013, online edition of the journal the Annals of Neurology revealed that neural progenitors from DS and human control iPSCs displayed a forebrain identity and differentiated into bipolar- and pyramidal-shaped neurons.

DS patient-derived neurons showed increased sodium currents in both bipolar- and pyramidal-shaped neurons. Consistent with increased sodium currents, both types of DS patient-derived neurons showed spontaneous bursting and other evidence of hyperexcitability that could potentially set off seizures. Neurons derived from the skin cells of individuals without epilepsy displayed none of this abnormal activity.

"With this technique, we can study cells that closely resemble the patient's own brain cells, without doing a brain biopsy," said senior author Dr. Jack M. Parent, professor of neurology at the University of Michigan Medical School. "It appears that the cells are overcompensating for the loss of channels due to the mutation. These patient-specific induced neurons hold great promise for modeling seizure disorders, and potentially screening medications."

The findings obtained during this study revealed a previously unrecognized cell-autonomous epilepsy mechanism underlying DS, and offer a platform for screening new antiepileptic therapies.

Related Links:

University of Michigan




Print article

Channels

Drug Discovery

view channel
Image: A kidney stone (yellow) composed of calcium oxalate showing sharp edges (Photo courtesy of Wikimedia Commons).

Hydroxycitrate Potentially More Effective Than Citrate for Kidney Stones

The chemical hydroxycitrate (HCA) was shown in a recent study to be more effective for treating calcium oxalate kidney stones than the commonly used compound potassium citrate. Calcium oxalate monohydrate... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.