Features Partner Sites Information LinkXpress
Sign In
Demo Company

Monoclonal Antibody Blocks Pro-Life Molecular Signaling in Pancreatic Tumors

By BiotechDaily International staff writers
Posted on 29 Jul 2013
Print article
 Image: CTGF biology (Photo courtesy of Fibrogen, Inc).
Image: CTGF biology (Photo courtesy of Fibrogen, Inc).
A monoclonal antibody that selectively binds to connective tissue growth factor (CTGF) slows the progress of pancreatic tumors by decreasing the activity of XIAP (X-linked inhibitor of apoptosis), a protein that promotes cancer cell survival.

CTGF causes a variety of cellular responses including reduced cell adhesion and enhanced cell migration and proliferation. CTGF has also been shown to be essential for epithelial to mesenchymal transition (EMT), a process whereby normal functioning cells morph into ones that produce mainly scar tissue (of which collagen in the major protein component). Cellular responses to CTGF also have effects at the tissue level including remodeling, formation of new blood vessels (angiogenesis), changes in blood vessel architecture (permeability and stiffness), and replacement of normal tissue with scar tissue.

Treatment of pancreatic ductal adenocarcinoma (PDA) is hampered by poor tissue perfusion that restricts the amount of drug able to reach the tumor. Furthermore, cells in the tumor microenvironment produce molecules, such as CTGF, that provide "pro-life" cues that promote drug resistance in the cancer cells.

Investigators at Cold Spring Harbor Laboratory (NY, USA) used a mouse pancreatic cancer model to study the impact on tumor growth caused by the interaction between CTGF and Fibrogen Inc.'s (San Francisco, CA, USA) CTGF-specific monoclonal antibody, FG-3019.

They reported in the July 8, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that pancreatic tumors in mice treated with FG-3019 in combination with the chemotherapeutic drug gemcitabine stopped growing. The response to FG-3019 correlated with the decreased expression of a previously described promoter of chemotherapy resistance, the X-linked inhibitor of apoptosis protein.

"In addition to drug delivery being a problem, there is also this nurturing aspect that prevents cancer cells responding to the drugs," said senior author Dr. David A. Tuveson, professor of medical oncology at Cold Spring Harbor Laboratory. "Both CTGF and XIAP have been shown to be present in human pancreatic cancer tumors so combination therapy using antagonists of either molecule could be a feasible approach."

Related Links:

Cold Spring Harbor Laboratory
Fibrogen Inc.

Print article



view channel
Image: A partially completed three-dimensional printed airway from nostril to trachea with fine structure of the nasal cavity showing (Photo courtesy of Dr. Rui Ni, Pennsylvania State University).

The Structure of the Nasal Cavity Channels Food Smells into the Nose and Avoids the Lungs

Three-dimensional printing technology was used to create a model of the nasal cavity that enabled researchers to demonstrate why the smell of food goes into the nose rather than down into the lungs.... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image:  The BioSpa 8 Automated Incubator (Photo courtesy of BioTek Instruments).

Smart Incubator System Automates Live Cell Assay Operations

A new instrument that automates laboratory workflow by linking microplate washers and dispensers with readers and imaging systems is now available for biotech and other life sciences researchers.... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.